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Donald Coxeter (University of Toronto) wrote to John 

Leech (University of Stirling) in December 1974 about 

the groups Fa,b,c.  

He wanted to know the orders of the groups  
 

Fa,b,c = < r, s | r  2 = r s 
ar s 

b rs 
c = 1 > 

 

for small values of | a |, | b | and | c |.  

John Leech asked Colin Campbell and myself to help. 

We began to correspond with Coxeter. 

 

In a letter to CMC and EFR, Coxeter explained why 

the groups were interesting: 

"The groups Fa,b,c arose because some of them have 

Cayley diagrams which are '0-symmetric' or 'faithful'. I 

am writing a paper on such groups jointly with Foster, 

Frucht and Watkins. This is progressing very slowly." 



R M Foster was a leading electrical engineer, who 

became interested in symmetrical graphs that could be 

used as electrical networks, in the 1920s. 

 

At a conference held in Waterloo, Ontario, in April, 

1966, Foster presented a census of symmetric trivalent 

graphs with up to 400 vertices. This document, of 

which only a few copies were available, became part 

of the folklore of the subject. Coxeter became 

interested. [In fact The Foster census was published in 

1988 with a foreword by Coxeter.] 

 

The groups Fa,b,c yield many examples of graphs of 

this type with one generating involution and these 

examples are studied in the book. 

In a letter written to Coxeter on 7 October 1975, Colin 

and I made "the Fa,b,c conjecture" which I will now 

state after some preliminaries: 



Let  

n = a + b + c 

d = (a - b, b - c). 
First we classified the groups 

Ha,b,c =  

< r, s | r  2 = s 2n = rs ars brs c = 1>. 
Let (a, b, c) = 1. Then if n ≠ 0 and (d, 6) ≠ 6, 

the groups Ha,b,c are finite metabelian groups.  

 

If (d, 6) = 6, then   Ha,b,c  is infinite. 

If n = 0 the groups   Fa,b,c  are infinite.  

If t = (a, b, c) ≠ 1 then   Fa,b,c   is infinite 

unless  Ha/t,b/t,c/t   is abelian in which case 

Fa,b,c  ≅  Ha,b,c  ≅  C2n 

The Fa,b,c conjecture is as follows:



Let N be the kernel of the natural 

homomorphism from Fa,b,c  to Ha,b,c. Then 

(i)     N = 1    if   d = 1 

(ii)    N = 1    if   d = 2 

(iii)    N ≅ C2    if  d = 3 

(iv)    N ≅ Q8    if  d = 4 

(v)    N ≅ SL(2,5) if  d = 5 

 

The conjecture, and the complete description of the 

groups Ha,b,c, appeared in print in 1977 in a paper by 

CMC, EFR and Coxeter.  

 

In a paper in the Proceedings of the Edinburgh 

Mathematical Society that appeared in 1980, CMC and 

EFR proved (i) to be true. 



In 1984 Colin and myself published our fifth paper on 

the groups Fa,b,c. We were, however, still far from 

proving (ii), (iii), (iv) and (v). 

 

In a paper published in 1985 Manley Perkel identified 

certain subgroups of the group of affine linear 

transformations with the groups Fa,b,c. Using this he 

was able to show that the orders of certain of the 

groups  involved Mersenne primes, Fermat primes, or 

semi-Fermat primes. 

 

In 1997 Fulvia Spaggiari reproved some of the results 

of our 1977 paper with Coxeter. She also observed that 

Fa,b,b are fundamental groups of closed connected 

orientable 3-manifolds of Heegaard genus two. 



In 2003-2004 I had study leave and decided that I 

better have another attempt at proving the conjecture. 

George Havas and EFR proved part (v) of the 

conjecture.  

The proof proceeds as follows: 

1. s 
2n commutes with rs 

5r. 

2. s 
10n is central in Fa,b,c. 

3. e = s 
2n, f = rs 

2nr generate N. 

4. e 
5, f  

5, (ef )3 and (fe 
2) 

2 are central in N. 

5. Put M = < e 
5, f 5, (ef )3, (fe 

2)2 >. Then 

N/M ≅ A5. 

6. N is perfect. 

7. M is contained in the multiplier of A5. 

8. N ≅ SL(2,5). 



This method totally fails for the cases d = 2, 3 and 4 

since in each case   d   fails to be coprime to   2n.  

 

The next idea was to look and see how the computer 

was able to solve small cases. Leech, before his 

involvement with Fa,b,c, had developed a method of 

converting a computer coset enumeration into an 

algebraic proof. He had described such methods in his 

lectures Computer proof of relations in groups given 

at Galway in 1973 (published 1977).  

 

George Havas (with Colin Ramsay) had written a 

package PEACE (Proof Extraction After Coset 

Enumeration) that produced an algebraic proof after 

completing a coset enumeration. 



PEACE proof that s 22 = 1 in F1,3,7. 

(Note: Upper case letters are inverses of lower case 

letters) It is called a "proofword". 

 

sssssssssssssssrsr (sssrsssssssrsr )RSRSSSS 

SSS (RR )S (RR )rsr (sssrsssssssrsr )RSRSSSSS 

SSRSR (rr )RSR (rr )(RSRSSSSSSSRSSS )sssrss 

ssssrsr (sssrsssssssrsr )RSRSSSSSSr (RSRSS 

SSSSSRSSS )RR (rr )SSSrsr (RR )rsr (RR )rsrss 

sssssrsr (RSRSSSSSSSRSSS )RSRSSS (RR )rr 

(sssrsssssssrsr ) RRS (RR)SSS (sssrsssssssrsr) 

RSR 

Freely cancel as it stands. One obtains s 22. 

Remove the relations inside round brackets. Now 

freely cancel to obtain 1.   Hence s 22 = 1. 



Now this proof convinces any doubters that the 

computer is correct, but it provides no insight. My 

Ph.D. student Dale Sutherland wrote GAP code to 

translate these proofwords into a lemma based line by 

line proof. One could now "understand" the machine 

based proof and GH, EFR and Dale attacked Fa,b,c.  

First we make a number of observations regarding 

Dale's 'lemma version' of PEACE/GAP based proofs. 

1. Even starting with a short PEACE proofword, the 

lemma based proofs obtained from GAP will still be 

long. For example, for F3,5,7  the proof that s 
30 = 1 

contains 270 steps. 

2. There is no use taking proofs like that for s 
30 = 1 

in F3,5,7 and hoping to generalise them. Rather we 

must seek to find significant ideas within such a proof. 



3. Most of the steps in the proofs found by GAP are 

trivial. For example in the proof of s 
30 = 1 in  F3,5,7 

considered above, the first few lemmas are 

r s 7 r s 3 r s 5 = 1 

s 3 r s 5 = s -2 r -1 s -3 r -1 s -2  

r -1 s -3 r  -1 s -7 r -1 s -5 = 1  

s 2 r -2 s -2 = 1. 
 

These are all obvious. We need to search for non-

trivial facts in the PEACE/GAP generated proofs. 

 

We looked at the PEACE/GAP generated proofs of  

s2k+8 = 1 in F1,3,k for k = 3, 5, 7, 11.  

We made several observations. 



a. The difficulty did not seem to increase with 

increasing k. 

b. No expression longer than 4 syllables appeared in 

the proof that s 2k+8 = 1, so, after using r 2 = 1, all 

words in the proof were essentially of the form  

r s p r s q r s r r s t = 1. 

c. The proofs seemed to use the fact that in this 

particular case b - a = 2a. 

Using these facts we were able to find a proof that  

s 2k+8 = 1 with seven steps. 

We then tried to find a proof for the groups F3,5,k. We 

observed that the proofs found by PEACE/GAP for the 

first few values of k did increase in difficulty with 

increasing k. More than 4 syllables were involved. The 

proof for F1,3,k did not generalise. 



However we did observe a significant type of that 

relation which appeared in these PEACE/GAP proofs. 

For F3,5,7  we observed relations of the form 

(rs 10rs 5)2 = 1;    (rs 12rs 3)2 = 1;  

(rs 14rs )2 = 1 

held. Proving that relations in such a sequence all hold 

is sufficient since (rs 0rs15)2 = 1 is a member of the 

sequence and this reduces to s 30 = 1 as required. 

Examining different proofs for small  k  led us to 

observe that F3,5,k  had relations of the form  

(rs 2m +3rs k -2m +5)2 = 1 

We used induction to obtain a proof of this result. 

Since k is odd, k + 5 is even. Put m = (k + 5)/2  to 

obtain  s 2k+16 = 1  as required. 



We decided next to look at the groups Fa -2,a,a +2  for 

small odd a. The presentation here exhibited more 

symmetry which helped us to recognise significant 

lemmas in the PEACE/GAP proofs. Again we 

observed that the proofs involved certain squares. This 

time the relations were of the form  

(rs 2m rs 3a -2m)2 = 1.  
 

Now m = 0  gives  s 6a = 1  as required. 
 

We then proceeded to examine the groups Fa -2,a,a +4 

followed by Fa -2,a,a +2m, again finding that we could 

construct a proof from a sequence of squares, although 

a harder induction was involved at each stage.  



Finally, generalising to Fa -2j ,a,a +2k where (j, k) = 1 

led to a proof of the conjecture for d = 2. 

 

A similar method led to a proof in the cases d = 3 and 

d = 4. In the end it all came down to proving the 

following. 

Write the groups in the form Fa-jd,a,a+kd  where  

(j, k) = 1. Then, we showed that, for all i 
 

(rs 2a+d(i+k-j) rs a-id ) 2 = 1 

(rs 2a-id rs a+d(i+k-j) ) 2 = 1 
 

From this, with some effort, cases d = 1, 2, 3, 4 can 

all be deduced. 



What happens if  (a, b, c) ≠ 1? We know that Fa,b,c   

is infinite but we can still ask: Is   Fa,b,c ≅ Ha,b,c  ? 
 

Theorem. Suppose (a, b, c) ≠ 1. Then if  

d | 2a   we have   Fa,b,c  ≅  Ha,b,c. 

 

Corollary If   (a, b, c) ≠ 1  and  d  is 

prime then have   Fa,b,c   ≅   Ha,b,c. 

 

Theorem Suppose (a, b, c) ≠ 1. Then if  d 

does not divide  6a  then  Fa,b,c   is not 

isomorphic to  Ha,b,c. 
 



 

There is a gap between the two theorems! 

 

The first ‘problem’ is  d = 6.  

If  (a, 6) = 2  we have no answer.  

 

However we can find index 4 subgroups 

in   Fa,b,c   and  Ha,b,c   with different 

abelian quotients proving in this case that 

they are non-isomorphic. 



Some applications: 

 

In 1990 CMC, EFR and Peter Williams proved that the 

group PSL(2, p n ), p and odd prime, could be 

presented with three generators and seven relations. 

The significance here is that the number of relations is 

bounded, it is independent of  p  and does not increase 

with n. 

 

This makes heavy use of the results on Ha,b,c.  

The way this works is that a trinomial in  GF(p n ) 

translates into a relation in  PSL(2, p n ) which, 

together with one more relation, allows us to deduce n  

commutator relations (as in the proof that the derived 

group of Ha,b,c  is abelian). 



Korchagina and Lubotzky call this trick of replacing n  

commutator relations by 2 relations the CRW-trick. 

They use if several times, and use the 1990 CMC, 

EFR, PDW theorem, in proving that every untwisted 

simple group of Lie type of rank m  over GF(p n ) can 

be presented with at most C(m ) relations (i.e. 

independent of p  and n ). (To appear 2006). 

 

They conjecture this holds for twisted simple groups 

of Lie type. 

 

They pose the problem of whether there is a constant C 

independent of n  and m  such that a simple group of 

Lie type of rank m  over  GF(p n ) can be presented 

with at most C relations. 



 

In Presentations of finite simple groups: a quantitative 

approach by Guralnick, Kantor, Kassabov and 

Lubotzky, it is shown that every finite simple group 

(except perhaps the Ree groups) has a presentation 

with a bounded number of relators (certainly less than 

500). Again this makes heavy use of the CRW-trick. 


