

A Maple

Handbook

All you need to know

— and more

D H Mackay

J J O’Connor

MT1008 2009

You can find electronic versions of each of the lectures in the Maple folder on the L-

drive on each of the computers in the microlab.

You will not be able to change them there, but you can copy them into your own

filespace and then you can play with them and modify the code to see what happens.

If you want to remove all the output you can use the Remove output command on the

Edit menu.

The same files will be available on the MMS system:

https://mms.st-andrews.ac.uk/mms/maths.html

in the section: MT1008: Student information area

and you can download them from there.

Seven pages of summaries are at the end of this booklet.

Contents

Using Maple as a calculator 2 Lists and sets 30

Help 4 Procedures 33

Polynomial expressions 5 More procedures 38

Trigonometric expressions 6 Reversing 39

Assigning 7 Pythagorean triples 43

Substituting 9 Some more equations 44

Differentiating 11 A mysterious sequence 44

Formatting worksheets 12 Continued fractions 46

Defining functions 13 The sum of two squares 47

Integrating 15 Looking for prime numbers 48

Plotting 19 Linear algebra package 51

Solving 22 Sudoku 57

Looping 27

If clauses 30 Summaries 1 — 7 60

2

Using Maple as a calculator
As a calculator, Maple works like any electronic calculator, except that you have of put ; after each

calculation and press the Return or Enter key. To move the cursor down to the next line without

doing the calculation, use Shift-Return.

You can press the key when the cursor is anywhere in the red bit of the "group" and Maple will

calculate for you.

You can go back and calculate with an earlier bit of code by clicking on the red bit and pressing

Return.
22/7-355/113;
sqrt(45);

1

791

3 5

To get a decimal answer, use the evalf (evaluate as a floating point number) function

The % stands for the last result Maple calculated. Note that this might not be the previous result on

the work-sheet if you went back and recalculated an earlier entry.

evalf(%);

6.708203931

%% stands for the last but one result. This time you can get the answer to 20 significant figures

evalf(%%,20);

6.7082039324993690892

Using a decimal point in your input tells Maple that you want the answer as a decimal.

sqrt(2.0);
1.414213562

Maple knows about Pi, which it calls Pi (the capital letter is important) and will give it to very great

accuracy.

Over the centuries mathematicians spent a lot of time calculating many digits of Pi. The methods

developed included a series for arctan discovered by James Gregory, the first Regius Professor of

mathematics at St Andrews.

 The English mathematician William Shanks published 707 places of Pi in 1873 and it was not

discovered until 1943 that the last 179 of these were wrong.

The expansion of Pi is now known to many billions of places.

evalf(Pi,1000);

3.141592653589793238462643383279502884197169399375105820974944592307816406286208\

99862803482534211706798214808651328230664709384460955058223172535940812848111\

74502841027019385211055596446229489549303819644288109756659334461284756482337\

86783165271201909145648566923460348610454326648213393607260249141273724587006\

60631558817488152092096282925409171536436789259036001133053054882046652138414\

69519415116094330572703657595919530921861173819326117931051185480744623799627\

49567351885752724891227938183011949129833673362440656643086021394946395224737\

19070217986094370277053921717629317675238467481846766940513200056812714526356\

08277857713427577896091736371787214684409012249534301465495853710507922796892\

3

58923542019956112129021960864034418159813629774771309960518707211349999998372\

97804995105973173281609631859502445945534690830264252230825334468503526193118\

81710100031378387528865875332083814206171776691473035982534904287554687311595\

62863882353787593751957781857780532171226806613001927876611195909216420199

22/7 is a well-known approximation for Pi.

This was known to the Greek mathematician Archimedes about 250BC (and indeed earlier).

A better, but less well-known approximation is 355/113.

This was discovered by the Chinese mathematician Ch'ung Chi Tsu in about 500AD.

Maple will calculate the difference between these two approximations and Pi.

evalf(22/7);
evalf(355/113);
evalf(22/7-Pi);
evalf(355/113-Pi);

3.142857143

3.141592920

0.001264489

2.66 10
-7

Maple knows about all the functions you have on your calculator: sqrt, sin, cos, etc as well as exp,

log = ln (log to base e), log10, log[b] (log to any base) and lots more besides.

It uses lower case letters for them.

To use them, put () around what you evaluate. Maple works in radians, not degrees. If you want the

answer as a decimal, you will have to ask for it.

sin(3);
sin(Pi/2);
sin(60*Pi/180); the sine of 60°
evalf(%);
sqrt(2);
2^(1/2);
evalf(%,50);

sin 3

1

1

2
 3

0.8660254040

2

2

1.4142135623730950488016887242096980785696718753769

Maple knows about some other functions your calculator (probably) can't handle. For example,

ifactor (for integer factorise) will write an integer as a product of prime numbers.

ifactor(123456789);

3
2
 3803 3607

4

The function factorial will calculate the product 1 ! 2 ! 3 ! ... ! n usually written n!

Maple recognises the ! notation too.

factorial(5);
factorial(100);
ifactor(100!);

120

93326215443944152681699238856266700490715968264381621468592963895217599993229915\

60894146397615651828625369792082722375825118521091686400000000000000000000000\

0

2
97

 3
48

 5
24

 7
16

 11
9
 13

7
 17

5
 19

5
 23

4
 29

3
 31

3
 37

2
 41

2
 43

2
 47

2

53 59 61 67 71 73 79 83 89 97

You can even apply ifactor to a fraction:

ifactor(123456/234567);

2
6
 643

3 67 389

Help

To see the help files on a Maple command, type the command and highlight it. Then go to the Help

menu and you will see an entry for the command. Alternatively, type ? and then the command. (You

don't even need a semi-colon!) .

?print

You can also use help(command); (and you do need the semi-colon!)

help(sin);

At the bottom of a help file, you will find some examples of how to use the command. (This is the

most useful bit!) You can copy and paste these lines into your worksheet and look at what happens.

Then you can change them to do what you want.

Each help file has a list of links to related topics at the bottom which may let you hunt down exactly

what you want.

The Help menu also has a "Search" facility which will point you in the direction of any help files

where the word or phrase you enter is mentioned. This tends to produce too much output to be very

useful!

5

Polynomial expressions

One of the most important things Maple can do is to calculate with expressions as well as numbers.

Use the expand function to "multiply out".

(x+y)^5;
expand(%);

x y
5

x
5

5 x
4
 y 10 x

3
 y

2
10 x

2
 y

3
5 x y

4
y

5

expand((sqrt(2*x)+sqrt(x))^6);

99 x
3

70 2 x
3

Maple will (sometimes) suceed in manipulating an expression to make it "simpler".

Use the function simplify.

(x^2-y^2)/(x-y);
simplify(%);

x
2

y
2

x y

x y

Maple will factorise expressions as well — if it can! Use the factor function.

(x-y)^3*(x+y)^5;
expand(%);
factor(%);
factor((x-y)^3*(x+y)^5+1);

This last is too difficult!

x
8

2 x
7
 y 2 x

6
 y

2
6 x

5
 y

3
6 x

3
 y

5
2 x

2
 y

6
2 x y

7
y

8

x y
3
 x y

5

x
8

2 x
7
 y 2 x

6
 y

2
6 x

5
 y

3
6 x

3
 y

5
2 x

2
 y

6
2 x y

7
y

8
1

Maple will also handle ratios of polynomials in this way.

expand(((x-y)^2+(x+y)^2)/(x^3-y^3));
simplify(%);
factor(%);

2 x
2

x
3

y
3

2 y
2

x
3

y
3

2 x
2

y
2

x
3

y
3

2 x
2

y
2

x y x
2

x y y
2

6

Maple can simplify polynomials in some other ways. In particular, you can ask it to collect together

the terms in (say) x
n
 using the collect function.

(x-2*y)^4+(3*x+y)^3;
expand(%);
collect(%,x);
collect(%,y);

x 2 y
4

3 x y
3

x
4

8 x
3
 y 24 x

2
 y

2
32 x y

3
16 y

4
27 x

3
27 x

2
 y 9 x y

2
y

3

x
4

8 y 27 x
3

24 y
2

27 y x
2

32 y
3

9 y
2

 x 16 y
4

y
3

16 y
4

32 x 1 y
3

24 x
2

9 x y
2

8 x
3

27 x
2

 y x
4

27 x
3

Trigonometric expressions

Maple will handle many trigonometric identities using the expand function. It won't factor back again

(though there is a combine function which you can investigate).

sin(x+y);
expand(%);
factor(%);

sin x y

sin x cos y cos x sin y

sin x cos y cos x sin y

You can use Maple to expand cos(n x) for different values of the integer n and get polynomials in cos

(x).

These polynomials were first investigated by the Russian mathematician Pafnuty Chebyshev (1821 to

1894). They are very important in Numerical Analysis.

cos(5*x);
expand(%);
cos(12*x);
expand(%);

cos 5 x

16 cos x
5

20 cos x
3

5 cos x

cos 12 x

2048 cos x
12

6144 cos x
10

6912 cos x
8

3584 cos x
6

840 cos x
4

72 cos x
2

1

Maple will (sometimes) simplify trigonometric expressions.

sin(x)^2+cos(x)^2;
simplify(%);

sin x
2

cos x
2

1

Sometimes the answer isn't what you might expect.

7

simplify(1/(1+tan(x)^2));
1

1 tan x
2

Though you can help it!

simplify(1/(1+tan(x)^2)-cos(x)^2);
0

Assigning

Maple will store things (numbers, expressions, functions, ...) in "containers" or "variables".

Think of these as labelled boxes. This process is called assignment.

p:=15;
q:=75;
p/q;

p := 15

q := 75

1

5

One can also store expressions in these boxes.

One can then apply any Maple function to the contents of the box.
quad:=(x+2*y+3*z)^2;
expand(quad);
collect(quad^2,z);

quad := x 2 y 3 z
2

x
2

4 x y 6 x z 4 y
2

12 y z 9 z
2

81 z
4

108 x 216 y z
3

18 x 2 y
2

6 x 12 y
2

 z
2

2 x 2 y
2
 6 x 12 y z

x 2 y
4

One has to be a bit careful, however.
c:=a+b;
a:=1;b:=3;
c;

c := a b

a := 1

b := 3

4

If we now change either a or b, Maple remembers that c contains a+b and will change c too.
a:=5;
c;

a := 5

8

However, if we had already assigned numbers before we put them into the box, Maple will just put in

the number !
x:=1;y:=3;
z:=x+y;

8

z;
x := 1

y := 3

z := 4

4

and this time altering one of the numbers will not alter anything else.
x:=5;
z;

x := 5

4

To "empty" one of our boxes or variables we unassign it, using:
a:='a';
a;
c;

a := a

a

a 3

To unassign all the variables, use restart;
a;b;c;
restart;
a;b;c;

a

3

a 3

a

b

c

One can use this process to evaluate an expression.
f:=x^2+1;
x:=1.5;f;
x:=2.5;f;
x:=3.5;f;

f := x
2

1

x := 1.5

3.25

x := 2.5

7.25

x := 3.5

13.25

Substituting

Evaluating an expression f in x can be done using the subs function.

9

This does not assign anything to x.
restart;
f:=x^2+1;
subs(x=1.5,f);
subs(x=2.5,f);
subs(x=3.5,f);
x;

f := x
2

1

3.25

7.25

13.25

x

Note, however, that if x has a value already assigned to it, you won't get what you want !

x:=1;
subs(x=3.5,f);

x := 1

2

You can also use the subs function to substitute one expression for another.

It will do several substitutions at the same time.

restart;
subs(x=y+5,x^5*sin(x));
subs(x=y+5,z=y-5,x^2+y^2+z^2);
simplify(%);

y 5
5
 sin y 5

y 5
2

y
2

y 5
2

3 y
2

50

We can illustrate this with the process of simplifying a general cubic

equation

cub:=a*x^3+b*x^2+c*x+d;
t:=subs(x=y+k,cub);
collect(t,y);

cub := a x
3

b x
2

c x d

t := a y k
3

b y k
2

c y k d

a y
3

3 a k b y
2

3 a k
2

c 2 b k y a k
3

d c k b k
2

Now we replace k by b/3a to remove the y
2
 term. This substitution is known as a Tschirnhaus

transformation after the 17th Century German mathematician who first used it. It is analagous to the

process of completing the square for quadratic equations and is the first stage in reducing a cubic

equation to a form in which it can be solved.

subs(k=-b/(3*a),%);

10

a y
3 1

3

b
2

a
c y

2

27

b
3

a
2

d
1

3

c b

a

11

Differentiating

Maple will differentiate expressions. You have to tell it what to differentiate with respect to.

Anything else will be treated as if it were a constant.

This process is actually called Partial Differentiation.

diff(x^3,x);
diff(a*x^2+5,x);
diff(a*x^2+5,a);

3 x
2

2 a x

x
2

If you try to differentiate with repect to something which has had a value assigned to it, Maple will

complain. Unassign the variable or use restart to be safe !

x:=1;
diff(x^4,x);

x := 1

Error, invalid input: diff received 1, which is not valid for its
2nd argument

x:='x';
diff(x^4,x);

x := x

4 x
3

Maple uses the function Diff (with a capital letter) to write out the formula for the derivative, but

without actually doing the differentiation.

Diff(x^4,x);
Diff(x^9,x)=diff(x^9,x);

d

dx
 x

4

d

dx
 x

9
= 9 x

8

Maple will differentiate more than once -- with respect to the same variable or different variables.

diff(x^3+y^3+3*x^2*y^2,x,x);
diff(x^3+y^3+3*x^2*y^2,x,y);

6 x 6 y
2

12 x y

As a short cut, if you want to differentiate (say) 4 times wrt the same variable, you can use x$4.

diff((1+x^2)^3,x$4);

360 x
2

72

The French mathematician Adrian-Marie Legendre (1752 to 1833) defined some important

polynomials in connection with solving the problem of how the gravitational effects of the moon and

sun affected the tides.

In the past, mathematicians had to look up the coefficients in tables, but Maple can calculate them very

12

easily.

n:=7;
diff((x^2-1)^n,x$n)/(n!*2^n);
collect(%,x);

n := 7

x
7 21

2
 x

2
1 x

5 105

8
 x

2
1

2
 x

3 35

16
 x

2
1

3
 x

429

16
 x

7 693

16
 x

5 315

16
 x

3 35

16
 x

Formatting worksheets
To put in comments (like this paragraph!) when the cursor is at a Maple prompt > either use the

Insert text item from the Insert menu, or the keyboard shortcut Control-T If you click on the T on

the Tool bar it puts in a paragraph for a comment after the present paragraph.

When you have finished, start a new Execution group (what Maple calls the group enclosed by the

bracket at the left) by using the item Execution group in the Insert menu, by using one of the

keyboard shortcuts Control-K (after) or Control-J (before) or clicking on the [> on the Tool bar.

You can use the same method to get a new execution group anywhere in your worksheet and then, if

you wish, you can use this to insert some explanatory text. The Edit menu has a Join command

which lets you put the comment in the same group as the command.

You can also put comments on the same line as Maple input.

x:=y^2; this assigns the value y
2
 to the variable x.

 You get the y
2
 by inserting "non-executable maths text".

x := y
2

Collapsing and expanding

You can make a "collapsible section" which you can 'expand' by clicking on the + symbol or

'contract 'by clicking on the - symbol. Do this by selecting what you want to put into it and then

selecting Indent from the Format menu or the symbol from the Tool bar. To get rid of such a

section select Outdent from the Format menu or the symbol from the Tool bar. When you

have made such a section you can type a heading next to its symbol to label it.

13

Defining functions

One can store functions in Maple's "boxes" as well as numbers or expressions.

A function is a "rule" for assigning a value to a number.

Note that although we may use x in the definition of a function, the function itself is not an expression

in x.

Here x is what is called a "dummy variable".

restart;
f:=x->x^3;
f(1.4);
f(y);

f := x/x
3

2.744

y
3

g:=y->sin(y);
g := y/sin y

Once we have defined two such functions we can then compose them by applying one to the other.

It usually matters which order we do this in.

f(g(x));
g(f(x));

sin x
3

sin x
3

If we compose functions which are ratios of linear functions, then we get another such function.

The way in which the coefficients of this function are related to the original ones led the English

mathematician Arthur Cayley (1821 to 1895) to the invention of matrix multiplication.

f:=x->(p*x+q)/(r*x+s);
g:=x->(P*x+Q)/(R*x+S);
f(g(x));
simplify(%);
collect(%,x);

f := x/
p x q

r x s

g := x/
P x Q

R x S

p P x Q

R x S
q

r P x Q

R x S
s

p P x p Q q R x q S

r P x r Q s R x s S

p P q R x p Q q S

r P s R x r Q s S

14

We may use the same method as above to define functions of two (or more) variables.

The pair of variables must be in brackets with a comma between them.

f:=(x,y)->x^2+y^2;
f(0,0);
f(1,2);

f := x, y /x
2

y
2

0

5

Maple differentiates expressions, not functions.

If you have defined a function f and want to differentiate it with respect to x, then you will have to turn

it into an expression by evaluating it at x by using f(x).

f:=x->x^3;
diff(f,x);

f := x/x
3

0

diff(f(x),x);

3 x
2

However the "operator" D will act on a function and return a function. Note where you have to put the

brackets.

D(sin);
f:=x->sqrt(1+x^2);
D(f);
D(tan)(x);

cos

f := x/ 1 x
2

x/
x

1 x
2

1 tan x
2

You can even manage higher derivatives like this, though it is a bit tricky!

(D@@3)(sin);
cos

Integration

The process of integrating is much older than differentiating and goes back to the Ancient Greeks. For

example, Archimedes' efforts to measure the area of a circle (and hence calculate a value for Pi) in

about 250BC are equivalent to trying to integrate a function.

Maple will calculate indefinite integrals when it can, but quite "easy" functions may be difficult even

for Maple.

If you differentiate the integral, you should get back to where you started.
int(x^5,x);
diff(%,x);

15

1

6
 x

6

x
5

g:=int(sqrt(1+sqrt(x)),x);
simplify(g);
h:=diff(g,x);
simplify(h);

g :=

8

15

4

15
 1 x

3 / 2
 3 x 2

8

15

4

15
 1 x x

4

5
 1 x x

8

15
 1 x

h :=

1

5

 1 x 3 x 2

x

2

5

 1 x
3 / 2

x

1 x

Sometimes Maple can't do it. But it still knows how to get back when it differentiates.
int(cos(sqrt(1+x^2)),x);
diff(%,x);

cos 1 x
2

dx

cos 1 x
2

Sometimes it can do the integral but it isn't much help.
int(cos(1+x^3),x);

1

6
 cos 1 2

1 / 3

9

2

2
2 / 3

2

7
 x

6 2

3
 sin x

3

 x
2

3 2
2 / 3

 cos x
3

 x
3

sin x
3

 x
2

9

7

x
7
 2

2 / 3
 sin x

3
 LommelS1

11

6
,

3

2
, x

3

 x
3 11 / 6

3 x
7
 2

2 / 3
 cos x

3
 x

3
sin x

3
 LommelS1

5

6
,

1

2
, x

3

 x
3 17 / 6

1

6
 sin 1 2

1 / 3

3

4

x 2
2 / 3

 sin x
3

9

4

x 2
2 / 3

 cos x
3

 x
3

sin x
3

3

4

x
7
 2

2 / 3
 sin x

3
 LommelS1

5

6
,

3

2
, x

3

 x
3 11 / 6

16

9

4

x
7
 2

2 / 3
 cos x

3
 x

3
sin x

3
 LommelS1

11

6
,

1

2
, x

3

 x
3 17 / 6

Remember, however, that integration should involve a "constant of integration" and so if you integrate

a derivative, the answer may look different.

f:=(1+x^2)^2;
g:=diff(f,x);
h:=int(g,x);
f-h;
simplify(f-h);

f := 1 x
2 2

g := 4 1 x
2

 x

h := x
4

2 x
2

1 x
2 2

x
4

2 x
2

1

Maple will calculate integrals of trigonometric functions which would be very tedious to tackle "by

hand". In every case, differentiation

should bring you back to where you started, but it might be a bit of a struggle.

f:=tan(x)^3; g:=int(f,x); h:=diff(g,x);
simplify(h);

f:=sin(x)^3/(1+cos(x)^3); g:=int(f,x); h:=diff(g,x);
simplify(h); simplify(h-f);

f := tan x
3

g :=
1

2
 tan x

2 1

2
 ln 1 tan x

2

h := tan x 1 tan x
2

tan x

tan x
3

f :=
sin x

3

1 cos x
3

g :=
1

2
 ln 1 cos x cos x

2 1

3
 3 arctan

1

3
 1 2 cos x 3

h :=
1

2

sin x 2 cos x sin x

1 cos x cos x
2

2

3

sin x

1
1

3
 1 2 cos x

2

sin x cos x 1

1 cos x cos x
2

0

Although one can repeatedly integrate a function, there is no shorthand for multiple interation as there

is for multiple differentiation.

17

f:=x^2-sin(2*x);
int(%,x);
int(%,x);
int(%,x);
int(%,x);
int(f,x,x,x,x); This only integrates once.

f := x
2

sin 2 x

1

3
 x

3 1

2
 cos 2 x

1

12
 x

4 1

4
 sin 2 x

1

60
 x

5 1

8
 cos 2 x

1

360
 x

6 1

16
 sin 2 x

1

3
 x

3 1

2
 cos 2 x

Maple will also do definite integrals. It will give an exact answer if it can.

Note the way you specify the range of integration: x = 0 . . 1 etc

int(x^4,x=0..1);
int(sin(x)^2,x=0..Pi);

1

5

1

2

The calculation mentioned above that Archimedes used to calculate Pi (the quadrature of the circle) is

equivalent to the integral:

int(sqrt(1-x^2),x=-1..1);
1

2

Maple will (sometimes) handle integrals over infinite ranges as well as integrals over ranges where the

function goes off to infinity.

int(exp(-x),x=0..infinity);
int(exp(x),x=0..infinity);
int(tan(x),x=0..Pi/2);
int(tan(x),x=0..Pi);

1

undefined

Even if it can't work out exactly what the answer is, you can ask it to do a numerical integration by

using the evalf function. It does this using a differnt method from working out an indefinite integral.

k:=int(cos(sqrt(1+x^2)),x=0..1);

18

evalf(k);

k :=
0

1

cos 1 x
2

dx

0.4074043129

As in the differentiation case, Maple will write out the formula for

the derivative if you ask for Int (with a capital letter).

Int(cos(x)^2,x);
Int(cos(x)^2,x=0..Pi);
evalf(%);
Int(cos(x)^5,x)=int(cos(x)^5,x);

cos x
2

dx

0

cos x
2

dx

1.570796327

cos x
5

dx =
1

5
 cos x

4
 sin x

4

15
 cos x

2
 sin x

8

15
 sin x

Plotting

Maple will plot the graph of a function y = an expresssion involving x on a given interval which you

specify (as in the definite integrals above) by (say) x = 0 . . 1.

plot(x*(x^2-1),x=-2..2);

x

2 1 0 1 2

6

4

2

2

4

6

Maple will plot several functions on the same axes. Put the expressions to plot into a list (with []

brackets round them) or a set (with { } brackets around them).

f:=x^3-x;
plot([f,diff(f,x),diff(f,x,x)],x=-2..2);

f := x
3

x

19

x
2 1 0 1 2

10

5

5

10

Maple will choose the vertical axis so that all the graphs fit in. If you don't want this, you can specify

the vertical range.

plot([x,x^2,x^3,x^4,x^5],x=0..2,y=0..2);

x
0 0.5 1 1.5 2

y

0

0.5

1

1.5

2

Maple will plot expressions. If you have defined a function f you can turn it into an expression by f

(x).

f:=x->sin(x)/x;
plot(f(x),x=0..1);

f := x/
sin x

x

20

x
0 0.2 0.4 0.6 0.8 1

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

If you want, you can plot the function directly -- but then you musn't mention x at all.

plot(f,x=0..20);
Error, (in plot) invalid plotting of procedures, perhaps you mean plot(f, 0 ..
20)

plot(f,0..20);

5 10 15 20

0.2

0

0.2

0.4

0.6

0.8

1.0

One can also specify the colours of the various graphs, or choose to plot them with dots, crosses, ...

You can find out about this using the help facilities on plot which you can get by typing in ?plot.

21

Solving

Maple will try and solve equations. You have to give it the equation and tell it what to solve for. If

there is only one variable in the equation, it will solve for that without being told. If you give it an

expression instead of an equation, it will assume you mean expression = 0.

solve(7*x=22,x);
solve(7*x=22);
solve(7*x-22);
solve(all_my_problems);

22

7

22

7

22

7

0

Maple will solve equations which have more than one solution.

solve(a*x^2+b*x+c=0,x);
solve(x^3-2*x^2-5*x+1=0,x);
evalf(%,4);

1

2

b b
2

4 a c

a
,

1

2

b b
2

4 a c

a

1

6
 316 12 I 2355

1 / 3 38

3 316 12 I 2355
1 / 3

2

3
,

1

12
 316 12 I 2355

1

/ 3 19

3 316 12 I 2355
1 / 3

2

3

1

2
 I 3

1

6
 316 12 I 2355

1 / 3

38

3 316 12 I 2355
1 / 3

,
1

12
 316 12 I 2355

1 / 3

19

3 316 12 I 2355
1 / 3

2

3

1

2
 I 3

1

6
 316 12 I 2355

1 / 3

38

3 316 12 I 2355
1 / 3

3.390 0.0003 I, 1.576 0.0007660 I, 0.1871 0.0009660 I

A short cut if you only want to see the decimal expansion is to use the function fsolve.

Usually, fsolve will only give the real roots of the equation. There are ways of getting complex roots

out of it. If you want to know what they are then you can consult the Help facilities for fsolve.

fsolve(x^3-2*x^2-5*x+1=0,x);

22

1.575773473, 0.1872837251, 3.388489748

fsolve(sin(x),x=3..4);
3.141592654

Maple will solve simultaneous equations

You have to enter the equations as a "set" (with { } round them and commas between).

If you want to solve for several variables, you have to enter these as a set too. If you leave out the

variables you want to solve for, Maple will assume you want all of them.

solve({y=x^2-4,y=-2*x-2},{x,y});
solve({y=x^2-4,y=-2*x-2});
evalf(%);

y = 2 RootOf 2 _Z 2 _Z
2
, label = _L2 2, x = RootOf 2 _Z 2 _Z

2
, label = _L2

x = RootOf 2 _Z 2 _Z
2
, label = _L4 , y = 2 RootOf 2 _Z 2 _Z

2
, label = _L4 2

y = 3.464101615, x = 0.7320508076

and of course, you can use fsolve here too.

fsolve({y=x^2-4,y=-2*x-2},{x,y});

y = 3.464101615, x = 0.7320508076

You can then use the plot facility to see the intesection of the two curves. Then you see that we've

missed one of the solutions
plot({x^2-4,-2*x-2},x=-3..1);

x

3 2 1 1

4

3

2

1

1

2

3

4

5

We can find the missing one by specifying ranges

fsolve({y=x^2-4,y=-2*x-2},{x=-3..0,y=0..5});

x = 2.732050808, y = 3.464101615

If there is more than one solution you can pick out the one you want using [1] or [2] or ...

f:=x^2+3*x+1;
sol:=solve(f=0,x);
evalf(sol[1]);

f := x
2

3 x 1

23

sol :=
1

2
 5

3

2
,

3

2

1

2
 5

0.381966012

and then you can draw the graph to see where it is

plot(x^2+3*x+1,x=-1..0);

x

1 0.8 0.6 0.4 0.2 0

1

0.5

0.5

1

As an illustration of how this can be used, we will calculate the equation of the tangent to a curve y =

f(x) at some point x
0
 say.

Recall that if the tangent is y = mx + c the gradient m is the derivative at x = x
0
. Then we have to

choose the constant c so that the line goes through the point (x
0
, f(x

0
))

f:=x->sin(x);
x0:=0.6;

fd:=diff(f(x),x);
m:=subs(x=x0,fd);
c0:=solve(f(x0)=m*x0+c,c);
y=m*x+c0;
plot([f(x),m*x+c0],x=0..1,y=0..1);

f := x/sin x

x0 := 0.6

fd := cos x

m := cos 0.6

c0 := 0.06944110450

y = 0.8253356149 x 0.06944110450

24

x

0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

You could now go back and alter the function f and the point x
0
 and run the same bit of code to

calculate the equation of the tangent to anything!

As a further illustration, we consider the problem of finding a tangent to a circle from a point outside

the circle.

The circle (well, semi-circle, actually) can be specified by y = 1 x
2

 and we'll find a tangent to it

from the point (say) (0, 2).

We first use the same method as above to calculate the equation of the tangent to the curve at a

variable point x
0

We'll begin by unassigning all our variables and then use a similar bit of code to that used above.

restart;
f:=x->sqrt(1-x^2);

fd:=diff(f(x),x);
m:=subs(x=x0,fd);
c0:=solve(f(x0)=m*x0+c,c);
y=m*x+c0;

f := x/ 1 x
2

fd :=
x

1 x
2

25

m :=
x0

1 x0
2

c0 :=
1

1 x0
2

y =
x0 x

1 x0
2

1

1 x0
2

Then vary x
0
 until the tangent goes through the point (0,2).

We'll make x
1
 the value of x

0
 when this happens.

Since this produces two answers, we'll choose one of them.

The gradient m
1
 of the tangent is then the value of m at this point and the intercept c

1
 on the y-axis is

the value of c
0
 at this point.

So we can find the equation of the tangent: y = m
1
x + c

1
.

x1:=solve(subs(x=0,y=2,y=m*x+c0),x0)[1];
m1:=subs(x0=x1,m);
c1:=subs(x0=x1,c0);
y=m1*x+c1;

x1 :=
1

2
 3

m1 :=
1

2
 4 3

c1 := 4

y =
1

2
 4 3 x 4

We'll plot the answer to see if it really works.

plot([f(x),m1*x+c1],x=-2..2,y=-1..2);

x

2 1 0 1 2

y

1

1

2

Asking Maple for the second solution above would give another tangent to the circle.

You could now replace x = 0, y = 2 by any other point and work out the equation of the tangents

going through that point.

26

Looping

There are several ways to get Maple to perform what is called a "loop".

The first is a for-loop. You put what you want done between the do and the end do.

for i from 1 to 5 do
x:=i;
end do;

x := 1

x := 2

x := 3

x := 4

x := 5

It is often better to stop Maple printing out everything it does. You can do this by putting a : (a colon)

after the loop instead of ; (a semi-colon). Putting a : instead of a ; after any command will stop Maple

from printing it out as it executes the command.

However, if you do want it to print something about what is going on, you can ask for it with a print

command.

for i from 1 to 5 do
x:=i;
print(x);
end do:

1

2

3

4

5

If you want to include some text, you can include it in "back quotes" (between the left-hand shift and

the z).

Single words (which Maple will interpret as variables) can get away without quotes, but more than

one word can't. See below for the effect of the usual ".

print(one_word);
print(`two words`);
print("two words");

one_word

two words

"two words"

print(two words);
Error, missing operator or `;`

There is another forms of for-loop: one in which we get the variable to increase itself by more than

one between implementing the things in the loop:

for i from 1 to 15 by 3 do
x:=i;

27

print(`the value of x is `,x);
end do:

the value of x is , 1

the value of x is , 4

the value of x is , 7

the value of x is , 10

the value of x is , 13

As an illustration of what to do with a loop, we calculate the sum of an Arithmetic Progression (AP)

to several terms e.g. 3, 5, 7, 9, ... We will suppress printing in the loop.

Suppressing printing has the effect of speeding things up, since it takes Maple much longer to print

than to calculate.

a:=1;d:=2;
term:=a:
total:=0:
for i from 1 to 100 do
total:=total+term;
term:=term+d;
end do:
total;

a := 1

d := 2

10000

In a similar way, we can calculate the sum of a Geometric progression (a GP) like 3, 6, 12, 24, ...

a:=3;r:=2;
term:=a:
total:=0:
for i from 1 to 20 do
total:=total+term;
term:=term*r;
end do:
total;

a := 3

r := 2

3145725

As an illustration of another kind of loop we answer the question of how many terms of a GP we

need to take before the sum is > (say) 10000 ?

We use a while-loop which will be implemented until the "boolean expression" in the first line of the

loop becomes False. A boolean expression, named after the English mathematician George Boole

(1815-1864) who was one of the first to apply mathematial techniques to logic, is something which

takes the values either True or False.

a:=3;
r:=1.1;

term:=a:total:=0:
count:=0:
while total < 10000 do
total:=total+term;
term:=term*r;

28

count:=count+1;
end do:
count;

a := 3

r := 1.1

61

30

If clauses

We now show how Maple can make a choice of several different things to do. This branching is

controlled by something called an if-clause. We put what we want Maple to do between the then and

the end if.

 Here is an example.

a:=90;
if a>60 then print(`a is bigger than 60 `);end if;

a := 90

a is bigger than 60

In the above, if the boolean expression (between the if and the then) is False, then nothing gets done.

We can alter that:

a:=50;
if a > 60 then print(`a is bigger than 60 `);
else print(`a is less than or equal to 60 `);end if;

a := 50

a is less than or equal to 60

You can put in lots of other alternatives using elif (which stands for else if).

a:=50;
if a > 60 then print(`a is bigger than 60`);
elif a >= 40 then print(`a is greater than or equal to 40 but
less than or equal to 60 `);
else print(`a is less than 40`);end if;

a := 50

a is greater than or equal to 40 but less than or equal to 60

Lists and Sets

A list in Maple is an ordered set and is written with [].

It is often convenient to put results of calculations into such a list. The nth element of a list L (say) can

then be referred to later by L[n].

You can treat the elements of a list as variables and assign to them.

A:=[1,2,3];
A[3];
A[2]:=55;
A;

A := 1, 2, 3

3

A
2

:= 55

1, 55, 3

You can't assign to an element that isn't there!

A[5]:=22;

31

Error, out of bound assignment to a list

The elements of a list are op(A) which stands for the operands of A.

To add extra elements:

L:=[];
for i from 1 to 100 do L:=[op(L),i^2];end do:
L;

L :=

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484,

529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521,

1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916,

3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761,

4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056,

7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801,

10000

The number of elements in a list is nops (= number of operands).

nops(L);
100

As above one can use a for loop to put elements into a list. We could have done the same thing using

the seq function:

M:=[seq(n^2,n=1..100)];

M := 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441,

484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444,

1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809,

2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624,

4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889,

7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604,

9801, 10000

The elements of a list do not need to be all the same kind and they can even be other lists:

N:=[x^2,[1,2],[]];
N := 169, 1, 2 ,

You can sort lists:

sort([1,6,-4,10,5,7]);
4, 1, 5, 6, 7, 10

You can do quite useful things with lists. For example, here are all the primes < 1000

L:=[]:

32

for i from 1 to 1000 do if isprime(i) then L:=[op(L),i];end if;
end do:
L;

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,

107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,

211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313,

317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433,

439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,

569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673,

677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811,

821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941,

947, 953, 967, 971, 977, 983, 991, 997

There are 168 of them!

nops(L);
168

Maple can also deal with sets, which it puts in { }. The elements are not in any particular order, and if

an element is "repeated" it will be left out.

S:={5,3,6,8};
T:={1,2,2,3};

S := 3, 5, 6, 8

T := 1, 2, 3

You can add an element to a set using union:

S:=S union {13};
S := 3, 5, 6, 8, 13

We can get Maple to loop over only certain specified values. We may list these values either as a list:

for i in [2,8,5,3] do
x:=i;
print(`the value of x is `,x);
end do:

the value of x is , 2

the value of x is , 8

the value of x is , 5

the value of x is , 3

or as a set. If Maple uses a set it will usually put it into order before implementing the commands.

for i in {2,8,5,3} do
x:=i;
print(`the value of x is `,x);
end do:

the value of x is , 2

the value of x is , 3

33

the value of x is , 5

the value of x is , 8

You can find out more with the Help command: ?list

Procedures

We saw earlier how to define a function using an assignment like: f := x -> x^2; This is in fact

shorthand for using a construction known as a procedure. We can get the same effect with:

f:=proc(x) x^2; end proc;
f(20);

f := proc x x^2 end proc

400

Procedures can act like functions and return a value (like x
2
 in the above example) but can implement

functions which are more complicated than just evaluating a formula. For example, we can adapt the

code we wrote above to define a procedure which returns the number of terms of a Geometric

Progression needs for its sum to go past some given value n.

The value returned is the last thing mentioned before the end proc, or you can put in return if you

wish. Note that variables which are only needed inside the procedure get declared to be local, so that

if the same variable names had been used somewhere else, these will not be changed by the procedure.

howmanyterms:=proc(x)
local term,total,count;
term:=a:total:=0:
count:=0:
while total<x do
total:=total+term;
term:=term*r;
count:=count+1;
od:
return count;
end proc;

howmanyterms := proc x

local term, total, count;

term := a;

total := 0;

count := 0;

while total x do total := total term; term := term * r; count := 1 count end do;

return count

end proc

Notice that Maple will pretty-print the procedure, indenting the code to indicate where the procedure

or loops start and finish.

To call the procedure, we tell Maple what the values of a and r are and then apply the procedure to a

number.

34

a:=3;r:=2;
howmanyterms(10000);

a := 3

r := 2

12

We can use an if-clause to define a function.

f:=proc(x) if x < 0 then x^2; else x+1; end if;end proc;
f(-1);
f(3);

f := proc x if x 0 then x^2 else x 1 end if end proc

1

4

We can plot this function, but it is necessary to be a bit careful plotting functions defined by

procedures, otherwise Maple gets unhappy.

You can either plot them without mentioning the variables at all, by: plot(f , -1 . . 1); or you can do it

by putting in some single quotes: ' '.

 If the variable x had been assigned to you would have to put that in quotes too.

plot(f,-1..1);
plot('f(x)',x=-1..1);

We count the primes up to a real number n. When we plot this we get a kind of "step function".

countprimes:=proc(n)
local count,i;
count:=0;
for i from 1 to n do
if isprime(i) then count:=count+1;end if;
end do;
count;
end proc;

countprimes := proc n

local count, i;

count := 0; for i to n do if isprime i then count := count 1 end if end do; count

end proc

plot(countprimes,1..100);
plot(countprimes,1..1000);

35

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

There is a "flat bit" near 890. In fact a sequence of 19 consecutive non-primes from 888 to 906.

plot(countprimes,880..910);

880 890 900 910

151

152

153

154

155

The French mathematician Adrien-Marie Legendre (1752 to 1833) approximated the growth of the

number of primes with the function:

L:=x/(log(x)-1.08);

36

L :=
x

ln x 1.08

plot(['countprimes(x)',L],x=0..100,0..25);

x

0 20 40 60 80 100
0

5

10

15

20

25

The German mathematician Carl Friedrich Gauss (1777 to 1855) used a different approximation: the

logarithmic integral:

logint:=proc(x) int(1/log(t),t=2..x); end proc;

logint := proc x int 1 / log t , t = 2 ..x end proc

plot([countprimes,logint],1..100);

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

You can see these different approximations together (we'll specify the colours since otherwise Maple

will draw one of them in yellow which does not print well):

plot(['countprimes(x)',L,'logint(x)'],x=0..100,0..25,colour=
[black,red,blue]);

37

x

0 20 40 60 80 100
0

5

10

15

20

25

38

More Procedures

If you want to make a procedure do something to a variable you have already defined outside the

procedure, you have to declare it as global.

Note that if you don't pass any parameters to a procedure, you still have to out in the brackets.

If you don't want to return anything from a procedure, finish it with return; or return();.

addonetoN:=proc()
global N;
N:=N+1;
return;
end proc;

addonetoN := proc global N; N := N 1; return end proc

N:=1;
addonetoN();
N;

N := 1

2

We'll add an element to the end of a list. In this case we don't want to return anything (though we do

want to alter something!) so we put return; at the end of the procedure.

addon:=proc(x)
global A;
A:=[op(A),x];
return;
end proc;

addon := proc x global A; A := op A , x ; return end proc

Then apply this

A:=[1,2,3];
addon(0);
A;

A := 1, 2, 3

1, 2, 3, 0

We could do something similar without using a global variable. Notice that in this case the variable A

does not change.

addend:=proc(A,x)
return [op(A),x];
end proc;

addend := proc A, x return op A , x end proc

A:=[1,2,3];
B:=addend(A,0);
A;

A := 1, 2, 3

B := 1, 2, 3, 0

1, 2, 3

One thing to be careful of is that you cannot use the parameters passed to the procedure as local

variables and assign to them.

39

test:=proc(n) n:=n+1; return n end proc;
test := proc n n := n 1; return n end proc

test(9);
Error, (in test) illegal use of a formal parameter

Reversing

We can use Maple to find the solution to the following problem

Find a four digit number which is multiplied by 4 when its digits are reversed.

We start by defining a procedure which turns the digits of a number into a list.

Note that we test each procedure as we write it

digits:=proc(n)
local ans,m,d;
m:=n;ans:=[];
while m<>0 do
d:=m mod 10;m:=(m-d)/10;ans:=[d,op(ans)];
end do;
return ans;
end proc;

digits := proc n

local ans, m, d;

m := n;

ans := ;

while m 0 do

d := mod m, 10 ; m := 1 / 10 * m 1 / 10 * d; ans := d, op ans

end do;

return ans

end proc

K:=digits(12345008);
K := 1, 2, 3, 4, 5, 0, 0, 8

It's easy to write a list in the opposite order:

reverselist:=proc(L)
local i,M;
M:=[];
for i from 1 to nops(L) do
M:=[L[i],op(M)];
end do;
return M;
end proc;

reverselist := proc L

local i, M;

M := ; for i to nops L do M := L i , op M end do; return M

40

end proc

reverselist(K);
8, 0, 0, 5, 4, 3, 2, 1

Now we have to get a number back from its list of digits
buildit:=proc(L)
local ans,i;
ans:=0;
for i from 1 to nops(L) do
ans:=10*ans+L[i];
end do;
ans;
end proc;

buildit := proc L

local ans, i;

ans := 0; for i to nops L do ans := 10 * ans L i end do; ans

end proc

buildit(K);
12345008

Put the ingredients together:

reversenum:=proc(n)
buildit(reverselist(digits(n)));
end proc;

reversenum := proc n buildit reverselist digits n end proc

reversenum(78531);
13587

Now we can look for our four digit number

for n from 1000 to 9999 do
if reversenum(n)=4*n then print(n); end if
end do:

2178

Do the same for a 5 digit number

for n from 20000 to 25000 do
if reversenum(n)=4*n then print(n); end if
end do:

21978

and even for a 6 digit number

for n from 200000 to 250000 do
if reversenum(n)=4*n then print(n); end if
end do:

219978

So it looks as if we might have a theorem!

219999978*4;
879999912

An old question asks if one can always make a number "palindromic" by adding it to its reverse

41

n:=1790;
count:=0:
while reversenum(n)<>n do
n:=n+reversenum(n);
print(n);
count:=count+1;
end do:
print(`Palindromic in `,count,` steps`);

n := 1790

2761

4433

7777

Palindromic in , 3, steps

Numbers to try are 89 or 296 or A number NOT to try is 196
n:=196;
count:=0:
while reversenum(n)<>n do
n:=n+reversenum(n);
print(n);
count:=count+1;
end do:
print(`Palindromic in `,count,` steps`);

n := 196

887

1675

7436

13783

52514

94039

187088

1067869

10755470

18211171

35322452

60744805

111589511

227574622

454050344

897100798

1794102596

8746117567

16403234045

70446464506

42

130992928913

450822227944

900544455998

1800098901007

8801197801088

17602285712176

84724043932847

159547977975595

755127757721546

Warning, computation interrupted

43

Pythagorean triples

We can use Maple to search for solutions to equations with integer solutions. Such equations are

called Diophantine after the Greek mathematician Diophantus of Alexandria (200 to 284 AD).

For example, looking for Pythagorean triples satisfying a
2

b
2

= c
2
 we can use the Maple function

type(x, integer) to check whether a number has an integer square root. We take y ! x since otherwise

we will get each pair (x, y) twice.

for x from 1 to 20 do
 for y from x to 20 do
 if type(sqrt(x^2+y^2),integer) then
 print(x,y,sqrt(x^2+y^2))
 fi;
 od
od:

3, 4, 5

5, 12, 13

6, 8, 10

8, 15, 17

9, 12, 15

12, 16, 20

15, 20, 25

Here are all solutions up to x = 100 and y = 100.

We'll leave out those which are multiples of others we have found.

We do this by insisting that x and y have no factor bigger than 1 in common.

We arrange this using the igcd (= integer greatest common divisor or highest common factor)

function.

Notice how we combine the two conditions with an and.

L:=[]:
for x from 1 to 100 do
 for y from x to 100 do
 if type(sqrt(x^2+y^2),integer) and igcd(x,y) = 1 then
 L:=[op(L),[x,y,sqrt(x^2+y^2)]];
 fi;
 od:
od:
L;

3, 4, 5 , 5, 12, 13 , 7, 24, 25 , 8, 15, 17 , 9, 40, 41 , 11, 60, 61 , 12, 35, 37 , 13, 84,

85 , 16, 63, 65 , 20, 21, 29 , 20, 99, 101 , 28, 45, 53 , 33, 56, 65 , 36, 77, 85 , 39, 80,

89 , 48, 55, 73 , 60, 91, 109 , 65, 72, 97

44

Some other equations

Similarly, we can look for solutions of other equations like a
2

2 b
2

= c
2
 or 2 a

2
3 b

2
= c

2
 or ...

 Sometimes we don't find any and then we could try and prove mathematically that no such solution

exists!

for a from 1 to 100 do
for b from 1 to 100 do
c:=sqrt(2*a^2+3*b^2);
if type(c,integer) then print(a,b,c); end if;
end do
end do:

Another important equation we can explore in this way is Pell's equation, named (probably

incorrectly) after the English mathematician John Pell (1611 to 1685) but in fact studied by the Indian

mathematician Brahmagupta (598 to 660) much earlier.

It asks for a solution (x, y) to the equation n x
2

1 = y
2
 where n is a fixed integer.

n:=7:
for x from 1 to 2000 do
y:=sqrt(n*x^2+1);
if type(y,integer) then print(x,y); end if;
end do:

3, 8

48, 127

765, 2024

n:=13:
for x from 1 to 2000 do
y:=sqrt(n*x^2+1);
if type(y,integer) then print(x,y); end if;
end do:

180, 649

A mysterious sequence

The following is an old problem on which a lot of computing time has been spent.

Start with a number. If it is even then divide it by 2, if it is odd multiply it by 3 and add 1.

What happens to the sequence generated in this way ?

Experiment suggests that any sequence eventually "crashes down" to 1 (and then it will cycle 1, 4, 2,

1, 4, 2, ... indefinitely). The code below investigates, firstly how many terms it takes the sequence to

reach 1 (this is the variable count) and also what is the maximum value that the sequence reaches on

its way there (this is the variable biggest).

We investigate it for sequences starting at 1, 2, ... , 200.

Note that the expression a mod 2 gives the remainder when we divide a by 2 and so is 0 if a is even.

We'll print out the numbers as lists to save space.

L1:=[]: L2:=[]:

45

for i from 1 to 100 do
a:=i;
count:=0:
biggest:=0:
while a>1 do
if a mod 2=0 then a:=a/2; else a:=3*a+1; end if;
count:=count+1;
if a>biggest then biggest:=a;end if;
od:
L1:=[op(L1),count];
L2:=[op(L2),biggest];
end do:
L1; L2;

0, 1, 7, 2, 5, 8, 16, 3, 19, 6, 14, 9, 9, 17, 17, 4, 12, 20, 20, 7, 7, 15, 15, 10, 23, 10, 111, 18, 18, 18,

106, 5, 26, 13, 13, 21, 21, 21, 34, 8, 109, 8, 29, 16, 16, 16, 104, 11, 24, 24, 24, 11, 11, 112,

112, 19, 32, 19, 32, 19, 19, 107, 107, 6, 27, 27, 27, 14, 14, 14, 102, 22, 115, 22, 14, 22, 22, 35,

35, 9, 22, 110, 110, 9, 9, 30, 30, 17, 30, 17, 92, 17, 17, 105, 105, 12, 118, 25, 25, 25

0, 1, 16, 2, 16, 16, 52, 4, 52, 16, 52, 16, 40, 52, 160, 8, 52, 52, 88, 16, 64, 52, 160, 16, 88, 40,

9232, 52, 88, 160, 9232, 16, 100, 52, 160, 52, 112, 88, 304, 20, 9232, 64, 196, 52, 136, 160,

9232, 24, 148, 88, 232, 40, 160, 9232, 9232, 52, 196, 88, 304, 160, 184, 9232, 9232, 32, 196,

100, 304, 52, 208, 160, 9232, 52, 9232, 112, 340, 88, 232, 304, 808, 40, 244, 9232, 9232, 64,

256, 196, 592, 52, 304, 136, 9232, 160, 280, 9232, 9232, 48, 9232, 148, 448, 88

Things to notice about this output are the fact that successive integers often take the same number of

repetitions to reach 1 and the rather curious numbers which occur several times as the largest value

attained. They include 52, 88, 160 and most mysterious of all, 9232. You can spend more time

playing with this sequence, but be warned, a lot of effort has been spent on it already, and nobody

even knows if the sequence eventually gets back to 1 for every integer.

46

Continued fractions

In an earlier exercise in Spreadsheets we looked at Continued fractions:

You can think of calculating the decimal expansion of a (positive) real number as the result of
implementing the algorithm:

(*) Make a note of the integer part of the number. Subtract this from the number.
This gives a number x in the range [0,1). If x ! 0 then:
 ** Multiply x by 10 **
This (perhaps) gives a number " 1.
Now repeat the loop from (*).

We can replace the step at ** ... ** by anything else that makes x bigger.
In particular, if we put in:
 ** Take the reciprocal 1/x of x **
then the sequence of integers we get is the Continued fraction expansion of x.

We'll use Maple to calculate the first n terms in this expansion.

To round down a real number x Maple uses floor(x).

cf:=proc(r,n)
local ans,s,i;
ans:=[];s:=r;
for i from 1 to n do
ans:=[op(ans),floor(s)];
s:=s-floor(s);
if s<>0 then s:=1/s;end if;
end do;
ans;
end proc;

cf := proc r, n

local ans, s, i;

ans := ;

s := r;

for i to n do

ans := op ans , floor s ; s := s floor s ; if s 0 then s := 1 / s end if

end do;

ans

end proc

The continued fraction expansion of a rational number (a fraction) vanishes after a certain number of
steps.

cf(12346/56789,10);
0, 4, 1, 1, 2, 189, 1, 1, 6, 0

47

For irrational numbers we need to work with a decimal expansion and then we must tell Maple what
accuracy to work to.

If we want it to work to 20 significant figures, we enter: Digits:=20; (Note the capital letter!) It will
stay at that until you restart; or reassign Digits.

Digits:=50:
cf(Pi,30);

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4

cf(exp(1),40);
2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1, 1,

24, 1, 1, 26, 1

Continued fractions of square roots of integers repeat themselves:

cf(sqrt(117),40);
10, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1,

20, 1, 4, 2

Maple has "built-in" continued fractions which you can find out about with:

?convert/confrac

Sums of two squares
restart;

Asking which integers can be written as a sum of one or two squares goes back to Diophantus of

Alexandria. The answer was given by the Dutch mathematician Albert Girard in 1625 and by Fermat
a little later. The first proof was given by Euler in 1749.

S:={};
for i from 0 to 100 do
for j from i to 100 do
c:=i^2+j^2;
if c<=100 then S:=S union {c}; end if;
end do;end do:
S;

S :=

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58,

61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100

Let's see the factorisation of all these numbers.

T:=[]:
for i from 1 to nops(S) do T:=[op(T),ifactor(S[i])];end do:
T;

0, 1, 2 , 2
2
, 5 , 2

3
, 3

2
, 2 5 , 13 , 2

4
, 17 , 2 3

2
, 2

2
 5 , 5

2
, 2 13 ,

29 , 2
5
, 2 17 , 2

2
 3

2
, 37 , 2

3
 5 , 41 , 3

2
 5 , 7

2
, 2 5

2
, 2

2
 13 ,

53 , 2 29 , 61 , 2
6
, 5 13 , 2

2
 17 , 2

3
 3

2
, 73 , 2 37 , 2

4
 5 ,

48

3
4
, 2 41 , 5 17 , 89 , 2 3

2
 5 , 97 , 2 7

2
, 2

2
 5

2

Maple will let you apply a function to every member of a list or set.

ifactor(S);

0, 1, 2
3
 3

2
, 2

3
, 3

2
, 2

4
 5 , 2 5 , 2

2
 5 , 2 3

2
, 2

3
 5 , 3

2
 5 ,

2
2
 3

2
, 2

2
, 97 , 2 7

2
, 3

4
, 2 41 , 5 17 , 2 3

2
 5 , 2 , 5 , 13 ,

17 , 41 , 29 , 37 , 53 , 2
4
, 5

2
, 2 13 , 2

5
, 2 17 , 7

2
, 2

2
 13 ,

2 29 , 2
6
, 5 13 , 2

2
 17 , 2 37 , 61 , 73 , 2 5

2
, 89 , 2

2
 5

2

The answer is still not obvious.
In fact the numbers which can be written as a sum of two squares are those in which all the primes of
the form 4k + 3 are present as even powers in the factorisation.

Fermat also gave a formula for the number of different ways a number could be written as a sum of
two squares.

Looking for prime numbers

Recall that a prime number is an integer which is not exactly divisible by any smaller integer except
±1.
Maple tests for primeness using the function isprime which returns the answer True or False.

For example, we may look for the next prime after (say) 1234567
(Actually, Maple has a function nextprime which would do this for us, but let's not spoil the fun.)

a:=1234567;
while not isprime(a) do a:=a+1;end do:
a;

a := 1234567

1234577

We may count the number of primes in any given range. The German mathematician Gauss (1777 –
1855) was interested in how the primes were distributed and when he had any free time, he would
spent 15 minutes calculating the primes in a "chiliad" (a range of a 1000 numbers). By the end of his
life, it is reckoned that he had counted all the primes up to about two million.

count:=0:
for i from 15000 to 16000 do
if isprime(i) then count:=count+1;fi;
end do:
count;

108

There are some other interesting places to look for primes. The mathematician Euler (1707– 1783)

discovered that the formula x
2
 – x + 41 is particularly prime-rich. In fact it produces primes for

every integer from 1 to 40 (but not, of course, for x = 41) and for lots of others as well.

howmanyprimes:=proc(n)
local count,x;

49

count:=0:
for x from 1 to n do
if isprime(x^2-x+41) then count:=count+1;end if;
end do:
count;
end proc;

howmanyprimes(40);
howmanyprimes(400);

howmanyprimes := proc n

local count, x;

count := 0;

for x to n do if isprime x^2 x 41 then count := count 1 end if end do;

count

end proc

40

270

For many years mathematicians have tried to find big primes. The French mathematician Fermat
(1601 – 1665) best known for his so-called Last Theorem, investigated primes in the sequence

2
n

1.

for n from 1 to 50 do if isprime(2^n+1) then print(n,2^n+1);end
if;end do:

1, 3

2, 5

4, 17

8, 257

16, 65537

You should note that the values of n which give primes are all of the form 2
m
, but that n = 32 does not

give a prime.

Euler was the first to show (150 years after Fermat guessed that 2
32

1 would be prime) that it is
composite.
You can use the Maple function ifactor (= integer factorise) to verify this.

(In fact nobody knows if the formula 2
2m

1 produces any other primes after m = 4, though a lot of
effort has gone into looking for them.)

a:=2^32+1; ifactor(a);

a := 4294967297

641 6700417

One of Fermat's correspondents was the mathematician Mersenne (1588 – 1648). He too investigated

primes and looked at numbers of the form 2
n

1.

50

for n from 1 to 150 do
m:=2^n-1;
if isprime(m) then print(n,m);end if;
end do:

2, 3

3, 7

5, 31

7, 127

13, 8191

17, 131071

19, 524287

31, 2147483647

61, 2305843009213693951

89, 618970019642690137449562111

107, 162259276829213363391578010288127

127, 170141183460469231731687303715884105727

In fact it is fairly easy to show that if n is not prime the neither is 2
n

1. For example, 2
35

1 is

divisible by 2
5

1 and by 2
7

1.

(2^35-1)/(2^5-1);(2^35-1)/(2^7-1);
1108378657

270549121

Prime numbers of the form 2
n

1 are called Mersenne primes and they are almost always the largest
primes known. This is because a French mathematician called Lucas (1842 – 1891) invented a test for

such primes using the Fibonacci numbers. In 1876 he proved that the number 2
127

1 (see above) is
prime. This was the largest known prime until people started using computers in the 1950's. At

present 47 Mersenne primes are known. The most recent is 2
42643801

1 and was discovered on
12th April 2009 using GIMPS (the Great InterNet Mersenne Prime Search). The largest (and largest

known prime) is the 45th to be discovered on August 23rd 2008 and is 2
43112609

1.

With a bit of effort, we can show that it has 12 978 189 decimal digits (and won a prize of $100 000
for being the first one found with more than 10 million digits).

evalf(43112609*log10(2));

1.297818850 10
7

This is (well) outside the range of Maple, but you can test the next after those listed above.
isprime(2^521-1);

true

The Linear Algebra package

A lot of clever stuff has been written for Maple and has been put into Packages.

51

To see what packages are available type in ?index,package.
Here is one of them.

The LinearAlgebra package lets you work with Matrices (and vectors).
Note that all the commands in this package have capital letters.

restart;
with(LinearAlgebra);

&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm,

BilinearForm, CharacteristicMatrix, CharacteristicPolynomial, Column, ColumnDimension,

ColumnOperation, ColumnSpace, CompanionMatrix, ConditionNumber, ConstantMatrix,

ConstantVector, Copy, CreatePermutation, CrossProduct, DeleteColumn, DeleteRow,

Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct,

EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal, ForwardSubstitute,

FrobeniusForm, GaussianElimination, GenerateEquations, GenerateMatrix,

GetResultDataType, GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix,

HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix,

IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar, IsUnitary,

JordanBlockMatrix, JordanForm, LA_Main, LUDecomposition, LeastSquares, LinearSolve,

Map, Map2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse,

MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply,

MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace,

OuterProductMatrix, Permanent, Pivot, PopovForm, QRDecomposition, RandomMatrix,

RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row,

RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector,

SchurForm, SingularValues, SmithForm, SubMatrix, SubVector, SumBasis, SylvesterMatrix,

ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector, VandermondeMatrix,

VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix,

ZeroVector, Zip

The above lets you use all the functions it lists. If you don't want to see this list, put : instead of ;
when you enter with(...).

If you ever use restart; you will have to read the package in again.

A matrix is a "box of numbers". There are several ways to enter matrices. You tell Maple the number
of rows and columns (or just how many rows if you want a square one).
The second parameter is a list of lists. Maple will put in 0 if you don't tell it what the entry is.

A:=Matrix(2,[[a,b],[c,d]]);
B:=Matrix(2,3,[[a,b,c],[d,e,f]]);
C:=Matrix(3,2,[[a,b],[c]]);
Z:=Matrix(2,1);

52

A :=
a b

c d

B :=
a b c

d e f

C :=

a b

c 0

0 0

Z :=
0

0

You can enter a matrix by rows: written < a | b | c > or by columns: < a , b , c > and then rows of
columns or columns of rows.

There is something called the matrix palette on the View menu which can help,

A:=<<a|b|c>,<d|e|f>,<g|h|i>>;
B:=<<a,b,c>|<d,e,f>|<g,h,i>>;

A :=

a b c

d e f

g h i

B :=

a d g

b e h

c f i

You can initialise the entries of a matrix using a double for-loop or you can use the following:

M := Matrix(3,5,(i,j) -> i+2*j);

M :=

3 5 7 9 11

4 6 8 10 12

5 7 9 11 13

You can even get a matrix with "unassigned variables" for all the entries.

M := Matrix(3,(i, j) -> m[i,j]);

M :=

m
1, 1

m
1, 2

m
1, 3

m
2, 1

m
2, 2

m
2, 3

m
3, 1

m
3, 2

m
3, 3

You can add or subtract matrices of the same size and can multiply them by a number (or a variable)
using *.

A:=<<a|b>,<c|d>>;

53

B:=<<e|f>,<g|h>>;
C:=<<p|q>,<r|s>>;
A+B;
A-B;
3*C;

A :=
a b

c d

B :=
e f

g h

C :=
p q

r s

a e b f

c g d h

a e b f

c g d h

3 p 3 q

3 r 3 s

You can multiply together matrices of compatible shapes by A.B; and you can take powers of
matrices by (for example) A^3; or A^(-1); (giving the inverse of the matrix).

A.B;A^3;A^(-1);

a e b g a f b h

c e d g c f d h

a
2

b c a a b b d c a
2

b c b a b b d d

c a d c a b c d
2

 c c a d c b b c d
2

 d

d

a d b c

b

a d b c

c

a d b c

a

a d b c

Multiplication of square matrices is associative: A.(B.C) = (A.B).C and distributive A.(B + C) = A.B +
A.C but not (in general) commutative A.B ! B.A.

(A.B).C-A.(B.C);
a e b g p a f b h r a e p f r b g p h r , a e b g q a f b h s

a e q f s b g q h s ,

c e d g p c f d h r c e p f r d g p h r , c e d g q c f d h s

c e q f s d g q h s

simplify(%);

54

0 0

0 0

A.(B+C)-(A.B+A.C);
a e p b g r a e b g a p b r, a f q b h s a f b h a q

b s ,

c e p d g r c e d g c p d r, c f q d h s c f d h c q

d s

simplify(%);

0 0

0 0

A.B-B.A;

b g c f a f b h e b f d

c e d g g a h c c f b g

simplify(%);

b g c f a f b h e b f d

c e d g g a h c c f b g

Here are some useful matrices: RandomMatrix produces a matrix with entries in the range -99 .. 99.

IdentityMatrix(4);
ZeroMatrix(2,3);
RandomMatrix(3,2);

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0

0 0 0

34 21

62 56

90 8

The determinant of a matrix is a combination of the entries of a square matrix (in rather a complicated
way!) which has the property that it is 0 if the matrix does not have an inverse.

M:=<<a|b>,<c|d>>; Determinant(M);

M :=
a b

c d

a d b c

55

N := Matrix(3,(i, j) -> n[i,j]): Determinant(N);
n

1, 1
 n

2, 2
 n

3, 3
n

1, 1
 n

2, 3
 n

3, 2
n

2, 1
 n

3, 2
 n

1, 3
n

2, 1
 n

1, 2
 n

3, 3
n

3, 1
 n

1, 2
 n

2, 3

n
3, 1

 n
2, 2

 n
1, 3

We can use Maple to demonstrate a theorem discovered by the English mathematician Arthur Cayley
and the Irish mathematician William Hamilton.

First we take a "general matrix".

n:=2; A:=Matrix(n,(i,j)->a[i,j]);
n := 2

A :=

a
1, 1

a
1, 2

a
2, 1

a
2, 2

Id:=IdentityMatrix(n,n);

Id :=
1 0

0 1

Then we take the determinant of the matrix A - xI where x is an unassigned variable. This is a
polynomial in x called the characteristic polynomial.

Then the Cayley-Hamilton theorem says that the matrix A satisfies its characteristic polynomial. That
is, if we substitute A for x in this polynomial, we get the zero matrix.

p:=Determinant(A-x*Id);

p := a
1, 1

 a
2, 2

a
1, 1

 x x a
2, 2

x
2

a
1, 2

 a
2, 1

p:=collect(p,x);

p := x
2

a
1, 1

a
2, 2

 x a
1, 1

 a
2, 2

a
1, 2

 a
2, 1

Q:=sum(coeff(p,x,k)*A^k,k=0..n);

Q := a
1, 1

 a
2, 2

a
1, 2

 a
2, 1

a
1, 1

a
2, 2

a
1, 1

a
1, 2

a
2, 1

a
2, 2

a
1, 1

a
1, 2

a
2, 1

a
2, 2

2

simplify(Q);

0 0

0 0

56

Sudoku

In Sudoku you are given a partly filled 9 # 9 grid and have to fill in the rest with integers 1 to 9
subject to the conditions that no two entries in any row, column or 3 # 3 subsquare are equal.

The Maple program given here does not do it in the same way as an intelligent human, but uses a
technique called "backtracking" to make a series of guesses and then if they do not work, goes back
and guesses again.

We write a procedure to print the matrix split up into its 9 sub-squares.

pprint := proc(M)
local i,j,A,m,n;

 for i from 0 to 2 do
 A:=[Matrix(3),Matrix(3),Matrix(3)];
 for j from 0 to 2 do
 for m from 1 to 3 do
 for n from 1 to 3 do
 if M[3*i+m,3*j+n] =0 then A[j+1][m,n]:=` `;
 else A[j+1][m,n]:=M[3*i+m,3*j+n];end if;
 end do;end do;end do;
 print(A[1],A[2],A[3]);
 end do;
end proc:

We calculate which numbers can be put into a given "hole" in the matrix.

choice := proc(M, r, c)
 local i,j,ans,r1,c1;

 ans := {1,2,3,4,5,6,7,8,9};
 for i to 9 do
 ans := ans minus {M[r,i]};
 ans := ans minus {M[i,c]}
 end do;
 r1 := iquo(r-1,3); c1 := iquo(c-1,3);
 for i from 3*r1+1 to 3*r1+3 do
 for j from 3*c1+1 to 3*c1+3 do
 ans := ans minus {M[i,j]}
 end do
 end do;
 return ans
end proc:

We check to see if we have filled in all the "holes". If we have not, we look for the hole with the
fewest number of possibilities and try one of these. We repeat the process until either we have
finished or we are stuck. In the latter case we go back and try the next possibility.
The program uses a technique called recursion where the procedure calls itself.

checkit := proc(M)
 global gotit,soln;
 local i,j,k,N,holes,nextone,ch,nextchoice;

 if not gotit then
 holes:=0;
 nextone:=[0,0,10];
 N:=Matrix(9);
 for i from 1 to 9 do
 for j from 1 to 9 do

57

 N[i,j]:=M[i,j];
 if M[i,j]=0 then
 holes:=holes+1;
 ch:=choice(M,i,j);
 if nops(ch)<nextone[3] then nextone:=[i,j,nops(ch)];
end if;
 end if;
 end do;
 end do;
 if holes=0 then
 gotit:=true; soln:=M;
 elif nextone[3]<>10 then
 nextchoice:=choice(M,nextone[1],nextone[2]);
 for k in nextchoice do
 N[nextone[1],nextone[2]]:=k;
 checkit(N);
 end do;
 end if;
 end if;
end proc:

We feed in a matrix with 0's for the spaces.

M:=Matrix(9,
[
[0,0,0,0,0,8,0,5,4],
[0,4,0,0,0,9,0,7,1],
[0,0,0,0,5,0,0,0,0],
[0,0,0,2,0,0,0,6,7],
[0,0,8,0,0,0,9,0,0],
[9,3,0,0,0,4,0,0,0],
[0,0,0,0,3,0,0,0,0],
[5,7,0,6,0,0,0,8,0],
[1,2,0,7,0,0,0,0,0]
]):

The computers in the microlab take less that 2 seconds to find the solution!

pprint(M);print(` `);
gotit:=false:
checkit(M);
if gotit then pprint(soln); else print(`NO SOLUTION`);end if;

 4

,

 8

 9

 5

,

 5 4

 7 1

 8

9 3

,

2

 4

,

 6 7

9

5 7

1 2

,

 3

6

7

,

 8

58

3 9 6

8 4 5

7 1 2

,

1 7 8

3 2 9

4 5 6

,

2 5 4

6 7 1

3 9 8

4 5 1

2 6 8

9 3 7

,

2 9 3

5 1 7

8 6 4

,

8 6 7

9 4 3

5 1 2

6 8 4

5 7 3

1 2 9

,

9 3 1

6 4 2

7 8 5

,

7 2 5

1 8 9

4 3 6

You may change one of the entries in the original matrix and verify that no solution exists.

 60

 Summary 1

Maple will work like an ordinary calculator. Type in your sum, put a semi-colon

after each calculation and then press the Return key. You can put more than one

calculation on a line, but you must put a ; after each one.

You can move on to a new line using Shift-Return.

Use the usual symbols +, – for addition and subtraction. Use * and / for

multiplication and division. Use ^ for to the power of and remember that the

computer will stick strictly to the correct order when doing arithmetic. Use round

brackets to alter this order if you want.

If it can Maple will produce exact answers containing fractions or square roots of

fractions.

If you want the answer as a decimal then use evalf(expression, [number of

figures]) which evaluates the expression as a floating point number. (The second

argument is optional.)

Use % for the last expression that Maple calculated and %% for the one before.

Maple recognises the usual functions like sqrt, sin, cos, tan, ... , arcsin, arctan, ...

as well as exp, log = ln, log10, ... and lots of other functions you’ve never heard of.

To use them, put () around what you evaluate.

The number ! lives in Maple as Pi.

Maple has functions your calculator can’t handle. For example, the function

ifactor (for integer factorise) can be applied to an integer (or even a fraction) to

write it as a product of prime factors and the function isprime tells you if an

integer is a prime number or not.

The function factorial (or n!) calculates 1 ! 2 ! 3 ! 4 ! ... ! n.

expand(expr) will “multiply out” an arithmetic expression, a polynomial

expression, a ratio of polynomials or a trigonometric expression.

factor will try to factorise a polynomial with integer (or fractions) as coefficients.

sort(expr) and collect(expr, x) will sort the terms of a polynomial and collect terms

in xn together. The coefficients of a polynomial can be obtained using coeff(p, x, n)

simplify(expr) will attempt to simplify an expression. It won’t always succeed or

necessarily produce what you expect.

You can see the help files for any command by typing ?command or by

highlighting the command and using the Help menu.

 61

Summary 2

a:=1; assigns the value 1 to the “store” or “variable” a. Lots of things, including

numbers and expressions, can be stored in this way.

If you store an unassigned variable x (or an expression containing x) in a variable a

then altering x will also alter a. If the variable x already had something assigned to

it before assigning it to a, then a will not be affected by changing x.

a:='a'; unassigns this variable — and makes it back into a proper variable again.

restart; unassigns all variables.

subs(x = a, y = b, ..., expr) substitutes a for x, b for y, ... in the expression.

f:= x -> expr assigns to the variable f the “rule” or “function” that maps x to the

expression. You can evaluate it at a point a say, by f(a);

Note that the function f is different from the expression f(x) (which is the function

evaluated at the “point” x).

diff(expr, x) differentiates the expression with respect to the variable x. You cannot

differentiate (or integrate) with respect to a variable which has had something

assigned to it. Any other variables in the expression will be treated as constants

when differentiating.

You can differentiate twice using diff(expr, x,x) or diff(expr, x$2).

Diff (with a capital letter) returns the formula for the derivative, but does not do

the differentiation.

To put in comments when the cursor is at a Maple prompt > either use the Insert

text item from the Insert menu, or the keyboard shortcut Control-T or click on

the T on the Tool bar.

When you have finished, start a new Execution group (what Maple calls the group

enclosed by a bracket at the left) by using the item Execution group in the Insert

menu, by using one of the keyboard shortcuts Control-J or Control-K or click on

the [> on the Tool bar.

You can use the same method to get a new execution group anywhere in your

worksheet and then, if you wish, you can use this to insert some explanatory text.

 62

Summary 3

plot(expr, x = a..b) plots the graph of y = the expression, for values of x between a

and b.

If you leave out the range: plot(expr, x) then Maple takes it to be –10 ! x ! 10.

plot([expr1, expr2], x = a..b, c..d) or plot([expr1, expr2], x = a..b, y=c..d) plots the

two graphs on the same axes and uses the specified ranges for the (horizontal) x

axis and the vertical axis.

int(expr, x) calculates the indefinite integral wrt x (if it can — integration can be

difficult).

int(expr, x = a..b) calculates the definite integral of the expression from a to b. Use

evalf to get a numerical answer if you need one. You can even make a or b infinity

or –infinity if you want.

Int (capital letter) returns the formula for the integral.

If a function has been assigned to f, you cannot differentiate, integrate (or plot) f

without turning it into an expression by, for example, putting it in as (say) f(x). As

in, for example

f:= x->x^2; diff(f(x),x);

solve(equation, x) tries to solve the equation for x. The variable x had better be

unassigned.

If you just want to see the floating point answer, you can use fsolve(equation, x).

To get Maple to find solutions lying in a range a ! x ! b you can use

fsolve(equation, x=a..b).

If there are several solutions, you can assign them to a list by, for example, s :=

solve(eqn, x) and then ask for s[1], s[2], etc. to get the first, second, ...

You can solve simultaneous equations for (say) x and y using solve({eqn1, eqn2},

{x, y}).

Similarly, fsolve({eqn1, eqn2}, {x, y}) or fsolve({eqn1, eqn2}, {x=a..b, y=c..d})

will give the numerical answers.

The brackets { } indicate that Maple is treating these as sets.

 63

Summary 4

 You can make Maple repeat a calculation a given number of times using a for-

loop.

for i from 1 to 100 do ... end do; will go through the instructions between

do and end do 100 times.

 If you want to stop Maple printing everything it does, finish the loop with a

colon : rather than a semi-colon ;

 Using a colon instead of a semicolon stops it printing other stuff too.

You can then ask it to print some of what is going on using print(something,

something else).

It will print the things you ask for (with commas between if there is more than one

thing) with a new line each time it implements the print statement.

 If you want to include text, you have to put in back-quotes ` ... ` (to get

these use the key at the top left of the keyboard).

 Examples of other forms of a for-loop are:

for i from 1 to 100 by 3 do ... end do; which increases the value of i by 3

each time it goes through the loop.

You can use: for i from 10 to 1 by –1 do ... end do; to decrease i.

for i in [1, 2, 5, 10] do ... end do; makes i take the values in the list

successively.

 Another form of loop is a while-loop. This has the form:

while boolean expression do ... end do; where the boolean expression evaluates

to give either True or False. Maple will repeat the instructions between do and end

do until the boolean expression becomes False. If you make a mistake, it might

continue for ever, but you can stop it by clicking on Stop on the menu-bar.

 You can use a boolean expression to choose between alternatives using an if-

clause.

if boolean expression then ... end if; will make Maple do what is between then

and end if provided the boolean expression evaluates to True.

 Alternative forms are: if boolean expression then ... else ... end fi; or the

more elaborate:

if boolean expression then ... elif another boolean expression then ... else ...

end if;

You can put in lots of other elif (= else if) bits if you want.

 64

Summary 5

A list is an ordered set of elements (or operands). L := [a, b, c, d];

It lives between [] and has commas between its elements.

The elements can be numbers, expressions, variables, other lists, ...

The empty list is []. You can get at an element of a list (if there is one) by asking

for it by its index (or number): L[3]; L[3 .. 5];

You can assign to elements of a list in the same way as you can to any variable:

L[3] := 4;

The number of elements in a list L is nops(L) (which stands for number of

operands).

A sequence is like the contents of a list (without the brackets).

You can make a sequence with (say) seq(expression, n = 1 .. 20); and make this

into a list by putting it between []. For example [seq(0, n=1..10)]; produces a

sequence of 10 zeros.

The sequence of elements of a list L is op(L) (which stands for the operands of L).

You can add to the elements of a list using L := [op(L), new elements];

You can sort a list L with sort(L);

Sets are like lists, but unordered and with no repetitions. They live inside { }.

You can deal with them using the operators union, intersection and minus.

 You can use a for-loop to sum a sequence, but Maple has a special function to

do this. sum(expression, n = 1 .. 20) sums the terms obtained by substituting n = 1,

2, 3, ... , 20 in the expression. You can sometimes get Maple to give the general

formula for a sum and can sometimes even sum for n = 1 .. infinity.

 65

Summary 6

A procedure can be used to define more complicated functions than the ones

given using an assignment f := x –> a formula involving x.

For example, f := x –> x^2; is really shorthand for f := proc(x) x^2; end proc;

The last expression in the procedure, immediately before end proc, is the value

that the procedure returns. The parameters inside the brackets are described as

being "passed to the procedure". Even if there aren't any such parameters to pass,

you still have to put in the brackets!

If the procedure involves a complicated calculation with assignment to extra

variables, these can be declared as local variables and will not then affect the

values of variables used outside the procedure which happen to have the same

names. If you don’t declare them as local variables, Maple will rather crossly tell

you that it has done the job for you.

You cannot use the parameters that are passed to the procedure as variables which

can be assigned to.

If you do want the procedure to access variables you have already used, you can

declare them as global. and if you change them inside the procedure, the values

ouside will be altered.

To plot a function defined by a procedure, do not mention the variable. For

example to plot a function defined by a procedure fn:

plot(fn, -1 ..1);

If you do need to mention the variable (for example if you want to simultaneously

plot a function given by an expression ex, say) then you can enclose things in

single quotes.

plot(['fn(x)', ex], x = 0 .. 1);

 66

Summary 7
A lot of clever stuff has been written for Maple and has been put into Packages.

To see what packages are available type in ?index,package.

To use the commands in (say) the LinearAlgebra package enter

with(LinearAlgebra):

(If you put a ; you get a list of all the available commands.)

If you ever use restart; you will have to read the package in again.

The LinearAlgebra package lets you work with Matrices (and vectors). Note that

all the commands in this package have capital letters.

A:=Matrix(2, [[a, b], [c, d]]); produces a square matrix with rows taken from the

list of lists in the second parameter.

B:=Matrix(2, 3, [[a, b, c], [d, e, f]]); makes a matrix with 2 rows and 3 columns.

If you don't tell it what the entries are it fills up with zeros.

You can make a matrix of (say) 3 rows by

A := < <a | b | c> , <d | e | f> , <g | h | i> >;

or of 3 columns by B := < <a , b , c> | <d , e , f> | <g , h , i> >;

There is something called the matrix palette (on the View menu) which can help.

You can make a matrix whose entries are given by some formula by using a double

for-loop, or by using (say) C := Matrix(3, 5 ,(i, j) -> i+2*j);

You can even get a matrix with "undefined" entries by X := Matrix(3, 3, (i, j) ->

x[i, j]);

You can add and subtract matrices of the same shape. You can multiply a matrix

by a constant (or a variable) by a*M; You can multiply together matrices of

compatible shapes by A.B; and you can take powers of matrices by (for example)

A^3; or A^(-1); (giving the inverse of the matrix).

Multiplication of square matrices is associative: A.(B.C) = (A.B).C and distributive

A.(B + C) = A.B + A.C but not (in general) commutative A.B " B.A.

Some interesting matrices are IdentityMatrix(m, n); ZeroMatrix(m, n);

RandomMatrix(m, n);

The determinant of a square matrix is a real number which is a complicated

combination of the entries of a matrix. It has the property that if the matrix is not

invertible than the determinant is 0. Maple calls it Determinant(M);

It also satisfies det(A.B) = det(A).det(B).

	b1
	b2
	b3
	b4
	b5
	b6
	b7

