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§0  INTRODUCTION 
 
§0.1 References 
 
[1] R B J T Allenby and E J Redfern, Introduction to number theory with 

computing (Edward Arnold 1989) 
 
[2] H Davenport, The Higher Arithmetic, an introduction to Number Theory 

(CUP 1st ed. 1952, 8th ed. 2006) 
 
[3] A Baker, A concise introduction to the theory of numbers (CUP 1990) 
 
 
 
§0.2 Preamble 
 
This course examines some interesting properties of the ring Z of integers. The 
subject has been studied since the earliest times (the Babylonians and Ancient 
Greeks made notable contributions) and has exercised the talents of some of the 
greatest mathematicians (Diophantus, Fermat, Euler, Gauss, Hilbert, ... ). With 
the widespread use of computers much of what a few years ago could be 
regarded as a dry academic study has come back into the mainstream of 
mathematics. 
 
As G H Hardy and E M Wright wrote in the Preface to An Introduction to the 
Theory of Numbers (1938): 
 

... the subject matter is so attractive that only extravagant 
incompetence could make it dull. 
 

Carl Friedrich Gauss (1777 – 1855) 
Mathematics is the queen of the sciences and number theory is the 
queen of mathematics. 

 
Leopold Kronecker (1823 – 1891) 

Die ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk.  
[God made the integers, all else is the work of man.] 
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§1 PRIME NUMBERS 
 
§1.1 Basic properties 
 
Definition 

A positive integer > 1 is called prime if it is not divisible by any positive 
integer other than itself or 1 

 
Remarks 
1) 0 and 1 are not regarded as primes. It is sometimes convenient to take the 

negative numbers –2, –3, –5, –7, ... as primes also. 
 
2) We can locate the primes 2, 3, 5, 7, 11, 13, 17, ... by using the Sieve of 

Eratosthenes (276 BC – 195 BC). 
 Start with the natural numbers from 2 onwards and strike out all multiples 

of 2, then 3, then 5 , ... At each stage remove all multiples of the smallest 
number remaining. This process (for numbers < 1 000 000 say) is 
surprisingly efficient. 

 
Theorem (Euclid about 300BC) 
 There are infinitely many prime numbers 
 
Proof 

Suppose there are only finitely many: . Then look at the 
number  
Now any number is either prime or divisible by a prime (if it is composite 
then apply the same argument to each factor) and N leaves a remainder on 
division by .  
Hence it is a prime, contradicting the original assumption.   
   

Definition 
The highest common factor (or greatest common divisor) of a pair of 
positive integers a, b is the largest integer hcf (a, b) dividing both. 
If hcf (a, b) = 1 then a, b are called coprime. 

 
We recall the result: 
 
The Euclidean Algorithm 

The highest common factor d of integers a, b can be written in the form      
d = ax + by for some  x, y in Z.        
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Example 
The highest common factor of 123 and 456 is 3 
 

a = 123 456 = b 
b – 3a =  87 369 = 3a 

–b + 4a = 36  87 = b – 3a 
6b – 22a = 30  72 = –2b + 8a 

–7b + 26a = 6  15 = 3b – 11a 
 6  12 = –14b + 52a 
 0   3 = 17b – 63a 

 
Remarks 
1) The proof that the algorithm works is essentially by construction, 

following the above example. 
 
2) Note that to prove the Euclidean algorithm we only needed the Division 

algorithm to hold. 
 
3) We note that this process is "computationally efficient". That is, its 

difficulty increases in proportion to the number of digits of a, b not in 
proportion to the size of a, b. 

 
We use the Euclidean algorithm to prove: 
 
The Fundamental Theorem of Arithmetic 

Every positive integer can be written as a product of primes in an 
essentially unique way (i.e. unique up to the order of the factors). 

 
Proof  

a)  It is easy to see that any number can be written as a product of primes: 
 If n is not prime it can be written as a product of smaller numbers. Then 

apply the argument to each of these smaller numbers until one is left with 
a product of numbers which cannot be split up further.  

 
b) Uniqueness is the tricky bit. 

 
Lemma  
 If a prime p divides a product ab then it either divides a or it divides b. 
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Proof 
If p does not divide a then (since the only factors of p are 1 and p)    
hcf(a, p) = 1 and so by the Euclidean Algorithm ax + py = 1 for some x, y 
in Z. 
Hence abx +pby = b and since p divides both terms on the LHS it must 
divide b.           

 
To finish the proof of the theorem 

 
If  is a product of primes in two ways, 
then  divides  and hence either  or  divides 

 and we can repeat the process to (eventually) get  = some 
. 
Then cancel out these two and repeat the process to match each of the  
s with one of the  s. 
i.e. the two factorisations are "essentially" the same.    

 
Remarks 
1) Although the Fundamental Theorem may seem "obvious" the uniqueness 

property is by no means trivial. There are systems in which, although 
factorisation is possible, uniqueness fails. 

 
2) The above proof shows that any ring which has a "Division Algorithm"   

[a can be written as qb + r with |r| < b ] and hence a Euclidean Algorithm 
will have unique factorisation. There are other systems in which unique 
factorisation holds even though they do not have a division algorithm. 

 
3) There is a different proof of the above theorem in [1] §1.4 and in [2] §1.4. 
 
4) Factoring numbers is in general a computationally very difficult process. 

Hence although for small numbers (say < 1000) finding the hcf by 
factorising them is OK, the Euclidean Algorithm is much easier for 
bigger ones. 
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§1.2 Some applications of Group Theory 
 
We recall some facts from elementary group theory. 
 
Theorem 

The set of all integers in the range 1, 2, 3, ... , n – 1 which are coprime to 
n forms an abelian group under multiplication modulo n.    

 
This group is called  (the group of units in the ring  ). 
In particular, if p is prime then . 
 
Definition 

The order of the group  is called Euler's -function. That is,  is the 
number of integers in {1, 2, 3, ... , n – 1} which are coprime to n. 

 
If p is prime than . 
For other numbers we may calculate  using the result: 
 
Theorem (Euler 1760) 
1)  If m, n are coprime then . 
2) If p is prime and k is any positive integer, then 

  . 

Proof 
1) By elementary ring theory, if m, n are coprime then  is the direct 

product . The multiplicative identity in  is (1, 1) and so 
an element (a, b) in  has a multiplicative inverse if and only if a is 
invertible in  and b is invertible in . Hence the number of invertible 
elements in  is . 

 
2) The only elements in 1, 2, 3, ... ,  which are not invertible modulo  

are the  elements . 
 Hence .        
 
Remark 
 You can find direct proofs of this in [1] §3.3 and in [2] §II.4. 
 
Example 

To calculate  
 and so . 
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From elementary group theory recall: 
 
Corollaries to Lagrange's Theorem 
 If g is an element of a finite group G the order of g divides |G| and 

.           
 
Applying this to  we deduce 
 
Theorem (Euler again) 
 For any n and a coprime to n, we have     
 
and in particular: 
 
Fermat's Little Theorem (Fermat 1640, proof Leibniz) 
 If p is prime then  for any integer a or  

for any a coprime to p.         
 
Remark 
 Direct proofs of Fermat's Little Theorem are in [1] §3.2 and [2] II.3 
 
Another result easy to deduce from elementary algebra is: 
 
Wilson's Theorem (John Wilson, 1770 though Leibniz knew it earlier) 
 If p is prime then (p – 1)! = –1 modulo p. 
 
Proof 

Since  is a field (p – 1)! consists of the products of all the elements in 
the field. Hence every element is cancelled by its inverse except for those 
which are their own inverses. The only such elements are ±1.    

 
Remark 

In fact the converse of this result is true. That is if (p – 1)! = –1 modulo p 
then p is prime. 

 
We can use Fermat's Little Theorem to make: 
 
Test for primality Mark I 

To test whether a number n is prime or not, evaluate  for 
some numbers a. If the answer is not 1 then n is not prime. 
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Remarks 
1) Some numbers do satisfy  without being prime. Such a 

number is called a pseudo-prime wrt a.  
In fact some numbers are so perverse that they satisfy  for 
any a. (That is, they are pseudoprimes wrt any integer coprime to them.)  
Such numbers are called Carmichael numbers (after R D Carmichael 
(1879 – 1967) who discovered them in 1909). 
The smallest Carmichael number is 561 and the next one is 1729. 
 

2) Nevertheless, the above is still a useful test for primality (or rather for 
non-primality) since calculating  is not computationally too 
difficult. The amount of calculation is proportional to the number of 
digits of k rather than to the size of k. 

 
Method of calculating powers 

To calculate  start with a and calculate  (mod n) and then 
find  and so on by squaring each time. Then write k in binary 
notation and piece together  from the various powers already 
calculated. 

e.g.  
 In binary 197 = 128 + 64 + 4 + 1 and we can calculate that mod 11: 
 and so 
  
 
So now we'll try and improve the above test using the following. 
 
Theorem  
 If p is an odd prime then the equation  has exactly two solutions in 

. 
Proof 
 We have  if and only if one of x – 1 or x + 1 = 0 

modulo p.  (This is because  is an "Integral domain" for those who 
know what that means!)         

 
So now suppose we have tested whether or not n was prime as above by 
calculating  and getting 1 (modulo n). Then suppose  (an 
integer since we must have n odd) and calculate . If this is not ±1 
then we would have three solutions to  and so n could not be prime. 
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In fact if  and q is even, we can repeat the process by calculating  
and so on. 
 
If we never detect that a composite number n is a non-prime by this process we 
call n a strong pseudoprime wrt a. 
 
Examples 
  and so 561 

is not prime (and although it is a pseudoprime wrt 2 it is not a strong 
pseudoprime). 

  
 and so 1729 is not prime (and although it is a pseudoprime 

wrt 2 it is not a strong pseudoprime). 
 
Remark 
 The smallest strong pseudoprime wrt 2 is 2047. There is no number         

<  which is a strong pseudoprime wrt 2, 3, 5 and 7. 
 
We us the above as the basis for: 
 
Primality test Mark II 

To test n for primeness (or non-primeness in fact!): 
Divide n – 1 by 2 until you get an odd number q (say). 
Then calculate (modulo n) . If m = ±1 then n passes the test for a. 
If m ≠ ±1 then calculate . If this is –1 then n passes, but if it is 
+1 then n fails. If it is ≠ ±1 then square again. 
 
Repeat the test for several different values of a. 

 
Remark 

This is the primality test used in Maple and other symbolic computation 
packages. 
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§1.3 Fermat and Mersenne primes 
 
Fermat (1601 – 1663) examined integers of the form . He proved: 
 
Theorem 

If a number of the form  is prime, then  for some m. 
 
Proof 

Recall that  and in general, if n is odd, 
. (Use the Remainder theorem or the 

sum of a GP.) 
So if k = ab with b odd, we may put  and get  which 
is hence divisible by . Hence if  is prime, k has no odd 
factors and must be a power of 2.       

 
Remarks 
1) The number  is called the mth Fermat number . The first few 

are:  and these are prime. 
Fermat (1640) believed/hoped that all the  were prime. However, 
Euler (1732) proved that   is divisible by 641.  

 
2)  =  In 

fact no other prime s are known. 
 
3) Gauss proved the amazing fact that if  is prime then a regular -gon 

can be constructed by ruler-and-compass methods. 
 
Factorising  is helped by the following: 
 
Theorem (Euler) 
 Any prime factor of  is of the form  for some q. 
 
Proof 
 Suppose p divides . Then  and so squaring  gives 

. By Fermat's Little Theorem .  
 Let .  

 Then . 
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 Now d is a power of 2, say  and since  but 
 we must have k ≥ m + 1. i.e. . 

 Hence p – 1 is divisible by  as required.      
 
Application 
 Any prime factor of  must be of the form 64k + 1. So the 

possibilities are: 65, 129, 193, 257, 321, 385, 449, 513, 577, 641, ... and 
so ignoring those which are not prime we need only try a few before 
finding a factor. 

 
Remark 
 The factor 274177 of  mentioned above is . The other 

factor is  
 
Another set of primes of great interest was studied by Mersenne (1588 – 1648). 
 
Theorem 
 If  is prime then m is prime. 
 
Proof 
 Note that x – 1 divides  and so if m = ab then (put ) we have 

 is divisible by .      

 
Remarks 
1) The number  is called the mth Mersenne number . 
 
2) Note that  is not prime for all primes m.  
 e.g.  
 The values of m for which it is known that  is prime are: 2, 3, 5, 7, 

13, 17, 19, 31, 61, 89, 107, 127, 521, 607, ... 
 Mersenne himself got some of them wrong.   
 Lucas (1842 – 1891) proved in 1876 that  was prime. Until the 

computer age this was the largest known prime. 
 
3) The set of Mersenne numbers is a popular place to look for the largest 

known prime. This is because there is a convenient mathematical test 
(Lucas 1876) to show that they are prime. There are now 47 Mersenne 
primes known; the latest discovered in April 2009. The largest known is 

 which has 12 978 189 decimal digits. 
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4) One may prove a similar result about the factors of Mersenne numbers to 

that about the Fermat numbers above. 
 
 
Theorem (Fermat 1640) 
 Any prime factor of  is of the form 2mk + 1. 
 
Proof 
 If a prime p divides  then  and  by 

Fermat's Little Theorem. Let d = hcf(p – 1, m) and write d = (p – 1)x + 
my. So (as before) . Since  is divisible by p we 
cannot have d = 1 and since m is prime we must have m divides p – 1. 
Since p – 1 is even it follows that 2m divides p – 1.     

 
The Ancient Greeks were interested in: 
 
Definition 
 A number is called perfect if it is the sum  of all its proper divisors. 
 
Examples 
  = 1 + 2 + 3 = 6, = 1 + 2 + 4 + 7 + 14 =28,  etc. 
 
Theorem (Euclid c 300BC) 
 A number of the form  where  is prime is a perfect 

number. 
 
Proof 
 If  is prime then the proper divisors are: 
 1, 2, 4, ... ,  and p, 2p, 4p, ... ,  and summing gives 

.        
 
Remarks 
1) The first few of this form are 6, 28, 496, 8128, 33550336, ... with m = 2, 

3, 5, 7, 13, ... 
 
2) Euler (in a posthumously published paper) proved that any even perfect 

number must be of this form. 
3) It is (still) not known if there is an odd perfect number. If there is it is 

greater than . 
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§1.4 The distribution of primes 
 
Primes become rarer as they get larger – roughly speaking because there are 
more possible divisors for a large number than for a small one.  
 
For example:  up to 1 000 000   there are about 80 000 primes 
   up to 2 000 000  there are about 140 000 primes 
   up to 10 000 000  there are about 620 000 primes 
   up to 100 000 000  there are about 5 000 000 primes 
 
In fact the way the primes are distributed is very regular. The big result is: 
 
The Prime Number Theorem 

If π(x) = # primes ≤ x then  where we say a ~ b if  as 

. 
 

Remarks 
1) This was conjectured by Gauss (1777 – 1855) and Legendre (1752 – 

1833) and eventually proved in 1896 by so-called Analytic Number 
Theory by Hadamard and de la Vallée Poussin, though Erdös and Selberg 
found a proof in 1949 which did not use Complex Analysis. 

 
2) Gauss and Legendre came up with different estimates of π(x).  

 Legendre verified experimentally that  is a "good 

fit" for π(x). 
 
 Gauss (in 1792 at the age of 15) defined the Logarithmic Integral 

 which is also a good fit for π(x). 

 
3) Riemann connected the problem with the z-function (defined by 

) and more advanced study of this part of number theory 

involves looking at this function. 
 
We shall prove a "weak" version of the Prime Number Theorem following the 
method of Chebyshev (1821 – 1894) in 1850. 
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A weak Prime Number Theorem 

 If n is large then . 

 (Chebyshev actually proved it with better bounds: ±11%) 
 
Proof 

We look at the binomial coefficient . The numerator contains 

the product of all the primes from n to 2n and none of these can be 
cancelled by the numbers in the denominator. Since each of primes 

between n and 2n is > n) we have . 

Also  and so . 

Hence  and taking logs gives 

 or . 

So take (say) n > 1400 and assume by induction that . 

Then  where * is 

equivalent to  or   or 
 or n > 1002. Hence the result is valid for 2n. 

Now we'll do it for 2n + 1. 

 where * is: 

LHS <  and  

RHS >  and as above we can verify that A < B holds 

for  n > 1359. 
So our inductive step holds and we have proves half of our result. 
 
For the other half: 
 

Lemma 

If p is prime and  is the largest power of p dividing  then . 
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Proof 

e.g.     

If  is the largest power of p dividing n! then (See Tutorial 3) 

 where  is the largest power of p ≤ n. 

Then if  is the largest power of p dividing k! and  is the largest 
power of p dividing (n – k)! then the largest power of p dividing 

 is  and 

each term in { } is ≤ 1. Hence this largest power is ≤ t and .  
 

Now  is divisible by at most π(n) primes and from the lemma, each 

power of these dividing  is ≤ n. i.e. . 

Also   

and so the RHS is ≤ . 

i.e.  and taking logs gives 
. 

So . 

* is equivalent to  or  which is true 

for n > 200 since .       

 
 
Remark 

Chebyshev was more careful with his estimates and hoped that methods 

like this would prove that  for arbitrarily 

small e, but later mathematicians failed to do this. 
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§1.5 Factorisation 
 
Factorisation of large numbers is still a difficult process though much progress 
has been made recently. (The record of about 190 digits took 5 months in 2005.) 
 
Methods 
1) Trial division 
 Divide by all the primes up to √n. 
 A variant is to choose a product P of the first few hundred primes (say) 

and the calculate hcf(P, n) using the (efficient!) Euclidean Algorithm. 
 
2) Fermat's method 
 Fermat used (with some success) the fact that  and 

so if a number can be factored (into odd factors, say) then it can be 
written as the difference of two squares. (Once you know x and y, it's 
easy!) 

 
How to do it 

To factorise , start with y = 1 and test whether  is a 
perfect square; then take y = 2, etc. 
Fermat tested this by observing that only a few pairs of digits can end a 
perfect square and so he only needed to go further in a few cases. This is 
called "Sieving". Fermat's method is still used by computers, but since 
taking roots (even on a machine) is still a difficult process, the computer 
will sieve several times working modulo several different numbers and 
eliminate numbers which cannot be squares. 
Fermat challenged the English mathematicians of his day to factorise 
2027651281 = 44021 ´ 46061. Using his method he needed to only go as 
far as y = 1020 before finding factors. 

 
3) Pollard's r-method 

This was introduced in 1975 
The idea is that if p is a factor of n and we choose random numbers 

 in  then it is more likely that  than that 
. Since one doesn't know p one detects this 
situation by taking . 
In fact, iterating a formula like 

 generates a suitable 
"random" sequence. This has the advantage 
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that if  then  etc.  
So the sequence becomes periodic with period s – r.  
If k is the smallest multiple of s – r > r then 2k is also a multiple of s – r 
and so  and so we need only calculate . 
This method was used in 1980 to factorise the 8th Fermat number 

. This is called the r-method because of the appearance of 
the diagram above. 
 

Example 
Take n = 77 (It should be easy to spot the hcf !) 
 

i 1 2 3 4 5 6 ... 
 2 5 26 61 26 61 ... 
  3  56  35  

 
Note that the sequence is already periodic. 
Then hcf(77, 56) = 7 and we have a factor. 

 
4) Other methods 

More recent methods have been developed to exploit the speed of modern 
computers. They include Pollard's p – 1 and p + 1 methods, the Elliptic 
Curve Method, the Quadratic Sieve Method, ... 
 
The work in earlier sections showed that numbers of the form  had 
restrictions on what could be their factors. It turns out that if n ± 1 have 
convenient factorisations then some clever shortcuts may allow the 
factorisation of n. So if you want a number n which is difficult to 
factorise you should take precautions that it is not one which such 
methods may be able to tackle. 
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§1.6 Cryptography 
 
Cryptography is a process used to conceal information from anyone not 
possessing "the key" to deciphering it. 
 
In The Dancing Men in The Return of Sherlock Holmes, Holmes is able to 
decipher a simple substitution code and writes a letter in it to summon the 
criminal. 

"If the lady is hurt as bad as you say, who was it that wrote this 
note?" He flung it on the table. 
"I wrote it to bring you here" 
"You wrote it? There was no one on earth outside the Joint who 
knew the secret of the dancing men. How came you to write it?" 
"What one man can invent, another can discover" said Holmes. 

 
With a traditional cipher system anyone who knew enough to decipher 
messages could, with little extra effort, determine the enciphering key. Here is a 
quotation from the autobiography of Casanova. 

Five or six weeks later, she [Madame dUrfé] asked me if I had 
deciphered the manuscript which had the transmutation process. I 
told her that I had. 
"Without the key, sir, excuse me if I believe the thing impossible." 
"Do you wish me to name your key madame?" 
"If you please." 
I then told her the key word, which belonged to no language and 
saw her surprise. She told me this was impossible, for she believed 
herself the only possessor of that word which she kept in her 
memory and had never written down. 
I could have told her the truth — that the same calculation which 
had served me for deciphering the manuscript had enabled me to 
learn the word — but on a caprice it struck me to tell her that a 
genie had revealed it to me. That day I became master of her soul, 
and I abused my power. Every time I think of it, I am distressed 
and ashamed, and I do penance now in the obligation under which 
I place myself in telling the truth in writing my memoirs. 
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As an application of primes and factorisation we consider the RSA (Rivest, 
Shamir, Adleman, 1978) public-key encryption system. 
 
The object of this is to arrange for A (Alice) to send B (Bob) a message without 
an outsider who intercepts it being able to decipher it. Such methods in the past 
had always involved A and B arranging between themselves a method of 
encryption/decryption known only to them. This usually involved the swapping 
of "keys". Such systems in the past were nearly always broken. 
 
The public-key system has the property that the encoding system that A uses to 
encipher her message is public, but only B can decipher it. 
 
This is done via a "trap-door" function" (a function which is easy to calculate 
but whose inverse is hard to calculate). The RSA system uses the fact that it is 
easy to write down the product of two (prime) factors, but it is very hard to find 
the factors if only the product is known. 
 
Theory 

Let pq be a product of two (big) primes. Then  
Let m = lcm(p – 1, q – 1). Then  for any . 
Choose numbers: c a coding power 
 d a decoding power 
with cd = 1 (mod m) (using the Euclidean algorithm). 
Then  for any .  
Note that  and . Then if  we have 

 and so . Similarly  and 
so . 
So we get two maps : coding:  and decoding:  
which are mutually inverse. 
 

Method 
B chooses two big primes p, q and calculates N = pq. He calculates m = 
lcm(p – 1, q – 1) and chooses (at random!) a number c coprime to m, B 
calculates d with cd = 1 (mod m) and then destroys p, q, m and publishes 
N, c. He keeps d very safe. 
Then if A wants to send a message she translates her characters into (say) 
ASCII code (in blocks of 3 digits). She puts all these blocks together into 
blocks smaller than the length of N (and not a multiple of 3 otherwise one 
just gets a substitution code!)  
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Then she (or her computer) raises each block to the power of c (mod N of 
course) and sends then to B. 
B can recover the original message by raising each block to the power of 
d. 

 
Remarks 
1) Note that a public-key system gives a lot of help to a would-be cracker. 

a) The cracker has "unlimited time" to attempt the factorisation. 
 
b) Although factorisation is difficult, for some products it may turn out to be 

easy. The code-setter should apply all known algorithms to the product 
before releasing it — and hope that the cracker doesn't know any new 
ones! 

 
2) One can be confident of the source of a message by using the system to 

give a "signature". Alice can put an authentication into her message by 
raising a message to her decoding power. Then if B raises this to Alice's 
coding power (public!) he can recover the message and be confident that 
it comes from someone who knows the decoding power. (Alice had better 
not use the same authentication string every time! 

 
 
 



 21 

§2 SOME OTHER ARITHMETIC SYSTEMS 
 
§2.1 Gaussian integers 
 
There are some other arithmetic systems which give insight into what happens 
in Z. Here is an example. 
 
Definition 
 The set of Gaussian integers Z[i] is the lattice of integer points in C. 
  i.e.  
 
It turns out that this set has some very nice algebraic properties. 
 
Definitions 

The norm of a Gaussian integer a + ib is  
 

A Gaussian integer u divides a Gaussian integer v if 
v = uq for some (quotient) . 

 
Then we have  
 
Theorem (The division algorithm for the Gaussian integers) 

If  then  (quotient/remainder) such that v = uq + r 
with N(r) < N(u). 

 
Remark 

Note that if we measure the "size" of a Gaussian integer with N this is 
similar to the division algorithm for Z where "size" of r is measured with 
| r |. 

 
Proof 

Look at . This lies in a "cell" of the integer 

lattice in the complex plane. We may choose a 

point q of the lattice within distance 1 of  and so 

we have  and  with | s | < 1. 

Then take r = us and then .   
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Remark 
Note that (unlike in Z) the quotient q is not always uniquely determined. 

For example, if  is in the shaded area there are four possible quotients 

within distance 1. 
 
Definitions 

The highest common factor hcf (or gcd) of two Gaussian integers is the 
largest (in Norm) Gaussian integer dividing them both. 

 
Exactly as in the Z case we have the Euclidean Algorithm to determine this. 
 
Definitions 

A unit in Z[i] is an element with a multiplicative inverse. The units, for 
which we must have N(u) = 1, are the elements ±1 and ±i. 
 
An irreducible or prime element in Z[i] is one which cannot be written 
as a product of smaller (size measured with N) ones. 

 
Then (because we have the Euclidean algorithm) the proof of §1.1 shows that:  
 
Theorem 

Factorisation into primes in Z[i] is unique (up to order of factors and 
multiplication by units).          

 
Which elements of Z[i] are prime ? 
 
Examples 

2 is not prime since 2 = (1 + i)(1 – i). 
5 is not prime since 5 = (2 + i)(2 – i). 
 
 

1) If N(u) is prime in Z then u is prime in Z[i]. 
 
Proof 

If u = vw then N(u) = N(v) N(w) and so the norm would factor also.   
 
Remark 

The norm of a Gaussian integer cannot be a prime of the form 4k + 3. 
You can see this by working modulo 4 where a square is either 0 or 1.  
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2) For a "real" or "purely imaginary" Gaussian integer: a + 0i or 0 + ai to be 

prime we must have a a prime in Z and it must be of the form 4k + 3 
otherwise we could write it as a product of Gaussian integers.  

 This follows from the result: 
 
Theorem (Fermat) 

Any prime of the form 4k + 1 can be written as the sum of two squares. 
 
Proof 

By Wilson's Theorem  (p – 1)! = (4k)! = –1 (mod p).  
Now (4k)! = 1.2.3. ... .2k ´ (p – 2k) (p – 2k + 1). ... .(p – 1) and if we 
write x = (2k)! this is . Hence p divides 

.  

But p cannot divide (1 ± ix) in Z[i] since  and so p must be a 

product of non-units in Z[i].  
Then p = (a + bi)(c + di) and taking Norms we get 

 and hence  is a sum of 
squares.           

 
Summary 
 The primes in Z[i] are: 
 a)  with N(u) = 2 or a prime of the form  4k + 1. 
 b) a + 0i or 0 + ai for a a prime of the form 4k + 3. 

 
 
 

 A picture of the prime 
Gaussian integers in the 

"first quadrant" 
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We can now factorise numbers in Z[i]. 
 
Example 

Factorise u = 12 + 11i in Z[i]. 
N(u) = 144 +121 =265 = 5 ´ 53. 
Hence a factor of u must have a norm which divides N(u) and so if u is a 
non-unit its norm must be either 5 or 53. 
Since both 5 and 53 are primes of the form 4k + 1 we can write them as 
sums of squares 
So the possible factors of u are 1 ± 2i and 7 ± 2i 
(Factors are only determined up to multiplication by ±1 and ±i.) 
Experiment with these to get 
(1 – 2i)(7 + 2i) = 11 – 12i = –i(12 + 11i) 

 
We can use the above to write numbers as the sum of two squares. 
Writing an integer n in this form is equivalent to finding an element u in Z[i] 
with N(u) = n. 
To find such a Gaussian integer u, observe that the norm of any factor of u must 
divide N(u). 
 
Method 
1) Factorise n (in Z). Say  where the primes 

 are of the form 4k + 1 and the primes  are of the form  
4k + 3. 

 The primes of the form 4k + 3 can only come from factors of the form     
q + 0i or 0 + qi and hence these will occur as squares in the factorisation 
of n = N(u). 

 
2) Write each of the primes  as a sum of two squares  giving a 

factor of u of the form a ± bi. (The factors of 2 are 1 ± i.) 
 
3)  Piece together suitable multiples of these factors to get a candidate with 

N(u) = u. 
 
Example 

To write 650 =  as a sum of two squares.  
i.e. Find  with N(u) = 650.  
Possible prime factors of u will have norms 2, 5 or 13. i.e. 1 ± i, 2 ± i,      
3 ± 2i. 
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Taking combinations of (respectively) one, two and one of these will give 
a Gaussian integer with the correct norm and a suitable representation of 
u as a sum of squares in three ways. 
 

 
 

 
 

 You can verify that choosing 1 – i in place of 1 + i would give the same 
sums of squares. 

 
Remark 

Fermat showed that if the primes in the factorisation of n of the form     
4k + 1 are  then the number of ways of writing n as a sum 
of positive squares is  except that if all the  

are even then add 1 before dividing by 2 (to allow for  or 
). 

e.g.  can be written as a sum of two 
squares in 20 ways: , ...
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§2.2 Integers in Quadratic Number Fields 
 
Some other "subrings" of C (and of R) have some interesting number theory. 
 
Those of the form  where d is a square-free integer (≠ 1) are 
called Quadratic Number Fields.  
 
An element of one of these is called an algebraic integer if it satisfies an 
equation  with . 
The quadratic integers then form a subring of R or C. 
We'll be most interested in the Imaginary QNFs where d < 0. 
 
Examples 
1) If d = –1 the quadratic integers are the Gaussian integers Z[i]. Note that 

this is a ring with a division algorithm and hence a Euclidean algorithm 
and has unique factorisation. 

 
2) If d = –2 the quadratic integers are all of the 

form [√–2]. 
 We can work as in the Gaussian integer case 

by taking  in a "cell" and choosing a lattice 

point within distance 1. 
As before we have a choice of quotients for 
some pairs. 

 Since we have a division algorithm we have a 
Euclidean algorithm and hence unique 
factorisation. 

 
3) If d = –3 we may look at the elements of the 

form [√–3] but this time the 
method of proving the division algorithm fails 

because we might have  right in the middle 

and distance exactly 1 from each lattice point. 
 And indeed, unique factorisation fails for this 

ring. 
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4) In fact, if d = –3 the element 
 is an algebraic 

integer and the algebraic integers are 
of the form  where a, b, 
c are integers and w is a cube root of 
1. We write this as . These then 
form a lattice in C as shown and 
again we can always choose a lattice 
point within distance 1 of any 

quotient . 

 
 These are sometimes called the Eisenstein integers. 
 
 
Remarks 
1) The algebraic integers in the QNF with d = ±2 or 3 (mod 4) are generated 

by 1 and √d; if d = 1 (mod 4) they are generated by 1 and  . 
 For d < 0 the values –1, –2,  –3, –7, –11 are the only ones with a division 

algorithm. For d = –19, –43, –67 and –163 the rings of algebraic integers 
have unique factorisation. (It finally proved that these were the only ones 
in 1966.) 

 
2) The rings of algebraic integers with d > 0  are more difficult to deal with. 

The formula N(a + b√d) =  gives a norm for the ring just as in 
the complex case.  

 Some of these rings have division algorithms and many more (nobody 
knows how many!) have unique factorisation. 

 In 1876 Lucas devised a cunning test for Mersenne primes based on 
Z[√3]. 
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§2.3 Lagrange's four squares theorem. 
 
This was proved by Joseph-Louis Lagrange (1736 – 1813) in 1770 following 
work by Euler. It had been conjectured earlier by Bachet (1581 – 1638), by 
Girard (1595 – 1632) and by Fermat — possibly even by Diophantus. 
 
Theorem 
 Any integer can be written as a sum of four squares. 
 
We will not prove this in the way it was originally done but instead use: 
 
Definitions 

The quaternions or Hamiltonians H are the set 
   
which add "like vectors" and multiply using the rules  
  etc. 
The norm of an (integer) quaternion is given by  
  
 

As in the Gaussian integers we have  for .  
 
Writing an integer n as a sum of four squares is equivalent to finding an integer 
quaternion with n as norm and so we deduce: 
 
Lemma 1 (Euler 1748) 
 If integers m, n are expressible as sums of four squares, so is mn.   

 
Remark 

In fact  =  = 
 +  +  + 
 which is what Euler discovered without knowing 

anything about quaternions. 
 
Lemma 1 means we need only prove the result for primes. 
 
Lemma 2 

If p is an odd prime then one may write mp as a sum of four squares for 
some 0 < m < p. 
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Proof 
In fact we will prove that  (a sum of three squares).  
Take . Look at .  

This is a set of q + 1 distinct elements (distinct since if  then 
 or  and only one of these is in the "lower half" of 0, 1, 

2, ... p – 1) 
Similarly  is a set of q + 1 distinct 
elements. Hence these sets overlap and we have  in  or 

 is divisible by p and so  for some m. 
Also  and  and so  
and so m < p.          
 

Proof of the four squares theorem 
We use the method of descent first introduced by Fermat to prove the 
theorem for an odd prime p.  
We have shown that mp is a sum of four squares and we'll show that we 
can find a smaller multiple rp which is a sum of four squares. 

 
We start with . Reduce a, b, c, d mod m to get A, 
B, C, D and then we get  for some r. We claim 
that r < m. As above, we can choose either A or –A so that we choose the 
one in the "lower half" of  so that  etc. So 

.  
The only time we get equality is if  in which case m 

is even and  and so 
. 

But then  which is impossible since    
0 < m < p and p is prime. 
Multiply together the expressions for mp and mr as sums of four squares 
to get  and use Lemma 1 
to write this as  and it is easy to check that 

 and that 
the other terms are also 0 (mod m). 
So we may divide the expression  by  and 
we have written pr as a sum of four squares with r < m. 
Since we cannot keep reducing r, we are led to the conclusion that the 
result holds with r = 1.         
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Remarks 
1) In fact one only needs four squares for integers of the form  

and three are enough for all the others. 
 
2) One can generalise this result to higher powers. For example, every 

integer can be written as a sum of 9 cubes and of 19 fourth powers. 
Edward Waring (1736 – 1798) asserted that for any number k there is an 
integer g(k) such that every number can be written as a sum of g(k) kth 
powers. This was proved by David Hilbert (1862 – 1943) in 1909. 



 31 

§3 MODULAR ARITHMETIC 
 
§3.1 Some group theory 
 
In 1801 in Disquisitiones Arithmeticae Gauss invented modular arithmetic  
of residue classes modulo n under addition and multiplication modulo n and 
answered some of the most important questions in it. 
 
In fact elementary group theory allows us to get some of the results more easily. 
Here are some results from that theory 
 
1) A group (written multiplicatively) is cyclic if it consists of the powers of 

some element: a generator.  
 We denote the cyclic group of order n by . 
 The group ( , +) is a cyclic group with 1 as a generator. 
 
2) Any subgroup of a cyclic group is cyclic. 
 
3) The order of an element of a group is the smallest power of that element 

which is equal to the identity. 
 
4) (Lagrange's theorem) The order of any element of a finite group divides 

the order of the group. 
 
5) If m, n are coprime then  
 
6) Any finite abelian group A can be written as a direct product 

 of cyclic groups in two ways: 
a) each  is a power of a prime, 
b) . 

 
7) If a finite cyclic group of order n has a generator g then  is also a 

generator for any k coprime to n. 
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§3.2 Primitive roots 
 
Definitions 

For any integer n the invertible elements of  are called units .  
An element k in  is invertible if k, n are coprime.  
The units form a subgroup  of order . 

e.g.  and  ,  and , 
 

If the group  is cyclic then a generator of  is called a primitive 
root for n. 

 
e.g. Since  is not cyclic, 8 does not have a primitive root.  
  {1, 2, 4, 5, 7, 8} and 2 is a primitive root for 9. So is 7 = –2. 
 
Gauss proved the most important result about primitive roots. 
 
Theorem (Gauss 1801) 
 Primitive roots exist only for n = 2, 4,  or 2  with p an odd prime. 
 
Proof of Gauss's theorem 
1)  and  so both these are cyclic. 
 If  with k ≥ 2 then  has  as a subgroup and so is not 

cyclic by (2) of the last section.  
 
2) If n is divisible by two odd primes p, q then  has  as a 

subgroup and since both  and  have even order this contains 
 as a subgroup and cannot be cyclic. Similarly, if n is divisible by 

4 and by an odd prime then  cannot be cyclic. 
 
3) Let p be an odd prime. Then p has a primitive root. 
  
Proof 
 The ring  is a field and in any field a polynomial P of degree d can 

have at most d zeros since if a is a zero of P we may write P = (x – a)Q 
with Q a polynomial of degree d – 1. 

 Now if  is not cyclic we may write it as a direct product 
 with . But then all the elements would 

satisfy the equation  and this would give too many solutions.   
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4) Let p be an odd prime. Then  has a primitive root. 
 

Proof 
The ring homomorphism  given by  is an onto 

map and so maps some element to the primitive root r for p. So a suitable 
power of this element y (say) has order p – 1. 
The element  satisfies  (by expanding by the 

binomial theorem and using the fact that the binomial coefficient 

 for k > 0). Hence this element has order p. 

A similar proof shows that  has order . (This time one 

needs to check that ) 
Then the product of the elements y and z has order . 
Hence this is a primitive root.        

  
5) Let p be an odd prime. Then  has a primitive root. 

 
Proof 

Since the rings  and  are isomorphic and , it 
follows that  and  are isomorphic groups and hence are both 

cyclic.           
 
Remarks 
1) There is no "good" way of finding a primitive root for a given prime. The 

table below gives some examples, 
  

Root Primes < 200 with this as smallest primitive root 
2 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 

107, 131, 139, 149, 163, 173, 179, 181, 197 
3 7, 17, 31, 43, 79, 89, 113, 127, 137, 199 
5 23, 47, 73, 97, 103, 157, 167, 193 
6 41, 109, 151 
7 71 

19 191 
 
2) If r is a primitive root for n then (7) in the last section shows how to find 

 of them. 
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3) Although it is not obvious from the proof above, if r is a primitive root 
for p then either r or r + p is a primitive root for each  with k ≥ 2.  

 
4) If r is a primitive root for an odd prime p then for any integer 0 < n < p 

we have  for some k. However, finding this k is a computationally 
difficult process known as the modular logarithm problem. This can be 
used as the basis of an encryption method similar to the RSA system 
outlined earlier. 

 
5) Alternative proofs of the existence of primitive roots are in [2] pg 127 – 

129 and [3] pg 23 – 25. 
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§3.3 Quadratic residues 
 
We now consider which elements of the ring  have square roots. 
 
Definitions (due to Euler) 

If an element s in  is the square of some element (i.e. has a square 
root) it is called a quadratic residue. The other elements are quadratic 
non-residues. 

 
In general, the pattern is hard to spot. 
For example, in  1 and 4 have 4 square roots; 0 and 9 have two square roots 
and the other elements have none. 
In  0, 1, 4 and 9 have 4 square roots and the other elements have none. 
In  0 has 3 square roots; 1, 4, 7 have two and the other elements have none. 
 
For primes things are easier. 
 
Theorem 

If p is an odd prime then half the elements of  are quadratic 
residues. 

 
Proof 
The multiplicative group  is cyclic with generator a primitive root r 
(say). Then the quadratic residues are even powers of r and the non-residues are 
the odd powers.           
 
Remark 
 If p is an odd prime then every quadratic residue has two square roots (±). 
 
Corollary 1 

The product of two quadratic residues or of two quadratic non-residues is 
a quadratic residue. The product of a residue and a non-residue is a non-
residue. 

Proof 
Look at the powers of a primitive root.      

 
Example 

In  3 is a primitive root. The powers of 3 are (with residues in bold): 
 3, 9, –7, –4, 5, –2, –6, –1, –3, –9, 7, 4, –5, 2, 6, 1 
and you may verify the above corollary. 
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Corollary 2 (Euler's criterion) 
Let p be an odd prime and  . Then  is a quadratic 
residue if and only if  (and a non-residue if ). 

 
Proof 

If a is an even power of the generator r then  
since 2q is the order of the group.       

 
Application 

When does the equation  have a solution modulo an odd prime? 
That is, when is –1 a quadratic residue? 
Answer: Û  q is even Û p is of the form 4k + 1. 

 
Remark 

Euler proved this result before the idea of a primitive root was 
introduced. 

 
Legendre (1752 – 1833) introduced a notation to help with calculation: 
 
Definition 

Let p be an odd prime and  . Then the Legendre symbol 

 is defined to be +1 if a is a quadratic residue modulo p and –1 if a is 

a non-residue. (Call it 0 if a = 0 (mod p)). 
 
Remarks 
1) We can now interpret the above corollaries as: 

a)  

b) If  then  mod p. In particular . 

 

2) If r is a primitive root and  for  then . 

 
Here is a different way of deciding if something is a quadratic residue. 
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Theorem (Gauss's Lemma) 
Let p be an odd prime and  . Consider the numbers a, 2a, 3a, 
... , qa (mod p). Let k be the number of these which are > q. Then a is a 
quadratic residue if k is even. 
 

Example 
Take p = 17, q = 8, a = 7 
We get:  7, 14, 4, 11, 1, 8, 15, 5 and so k = 3 and 7 is a non-residue. 
 

Proof 
Note that the above list is 7, –3, 4, –6, 1, 8, –2, 5 and that the numbers 1, 
2, ... , q occur once with either ±. 
This always happens since the numbers a, 2a, ... , qa must be distinct 
mod p (since a is invertible in ) and if we take these numbers to lie in 
the range [–q, q] and we were to have (say)  then 

 which can't happen since  is in the 
range [1, q]. 
Multiplying  with the appropriate choice 
of signs on the right and this is  Thus  and the result 
follows from Euler's criterion.        
 

Application 
For which primes p is 2 a quadratic residue modulo p ? 
Take  and we get a list:  2, 4, ... , 2q = p – 1. 
Put p = 8k + r and look at the different values of r. 
Answer: 2 is a residue if r = 1 or 7 and a non-residue if r = 3 or 5. 
 

Remark 

One may phrase this as . 
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§3.4 The Law of Quadratic Reciprocity 
 
This is a result which was conjectured (independently) by Euler, Legendre and 
Gauss and eventually proved by Gauss (the first of seven proofs in 1796, at the 
age of 19) "after great effort". 
 
It connects the condition for a prime  being a quadratic residue modulo a 
prime  in terms of  being a quadratic residue modulo . 
We can state it most conveniently using Legendre symbols. 
 
Theorem (The Law of Quadratic Reciprocity) 

Let  and  be distinct odd primes. Put . 

 Then . 

This can be phrased as: 
The quadratic character of  and  are "the 
same" unless both are 3 (mod 4) in which case they are opposite. 
 

Proof 
The following is a variation of a proof found by Gauss in 1808 and 
modified by Eisenstein (1823 – 1852). 

We use the Gauss lemma to calculate . 

Write  and subtract a suitable multiple of  so that each 
is in the range . 
 
Then the number of minuses we get is the number of pairs  
which lie in  for x lying in the range  (x, y integers). 

 and this 

is <  since y is an integer. Thus . 
 
So the number l of (x, y)s to count are the number of lattice points in the 
rectangle  which satisfy . 

Then . Similarly  where m is the number of 

lattice points in the rectangle satisfying  
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We are trying to show that  or equivalently that 
 is even.  

This number is the number of lattice points in the upper and lower 
triangles of the diagram below. 

 
The map  gives a 1-1 correspondence 
between the top triangle and the bottom one and so the total number of lattice 
points is even as required. 
 
Applications 
To calculate Legendre symbols: 
 

1)  so 15 is a qr mod 71 

(in fact √15 = ±21 mod 71) 
 

2)  

    *: since we can always take out squared factors 

  **: since 97 = 8k + 1  ***: since  

3) When is 3 a quadratic residue mod p ? 

 if p = 1 mod 4 and  if p = 3 mod 4. 

The only quadratic residue mod 3 is 1 so  

  if p = 1 (mod 4) and 1 (mod 3)  Û p = 1 (mod 12) 
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 or if p = 3 (mod 4) and 2 (mod 3)  Û p = 11 (mod 12) 
 i.e. p = ±1 (mod 12) 

§3.5 Square roots modulo non-primes 
 
As seen earlier, working modulo non-primes, a number may have more than 
two square roots. 
 
Theorem 

Let  with  a product of distinct prime powers. 
Then a has a square root if and only if a has a square root modulo each 

. 
If a has  roots modulo  then it has  roots modulo n. 
 

Proof 
Use the Chinese remainder theorem to reduce the problem to one modulo 
each .           
 

Example 
Let n = 30 = 2 ´ 3 ´ 5. 
Then 15 has one square root ( = 1) mod 2 and one root ( = 0) mod 3 and 
mod 5. Hence it has one root ( = 15) mod 30 
By contrast 19 has one square root ( = 1) mod 2 and two roots ( = ±1) 
mod 3 and two roots ( = ±2) mod 5. Hence it has four roots ( = ±7, ±13) 
mod 30. 

 
The problem of determining if a has a root modulo an odd prime power is made 
easier by: 
 
Theorem 

Let p be an odd prime. The element a (≠ 0 mod p) has a square root 
modulo  if and only if it has a square root modulo p. 
 
Proof 
If  then clearly . 
For the converse, if a has a root mod p put  and then put 

 and solve . This is 
 or  and we can 

solve this for bp since 2y and p are coprime. 
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Similarly  we may start with a root modulo  find a root modulo  etc.
            

 
Remark 

The number of square roots modulo a prime power is not obvious. For 
example modulo 27 the element 9 has six square roots (±3, ±6, ±12). 

 
There is a generalisation of the Legendre symbol which is helpful in 
calculation. 
 
Definition 

Let a, n be coprime where  is a product of (not necessarily 
distinct) odd primes.  

Then the Jacobi symbol is . 

 
Remarks 
1) If n is an odd prime this coincides with the Legendre symbol. 
 

2) If  then it does not necessarily follow that a has a square root 

modulo n. For example  but 2 has no square 

root mod 15. However if  then a has no square root. 

 
The following may be deduced from the results for Legendre symbols. 
 
Properties 

1) If a, b are coprime to the odd n then . 

 

2) If a is are coprime to the odd m, n then . 

 

3)  ;  

 
4) (Quadratic reciprocity)  
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 If m, n are coprime then . 

 
 
Example 

1)  and so 11 has no square root mod 27 

 
2) The Jacobi symbol may be used to calculate Legendre symbols 

 

Hence (since 2999 is a prime) this Legendre symbol is +1 and so 335 is a 
quadratic residue ( ) 

 
Remark 
 Although the above methods do not construct square roots there are 

computationally efficient ways to do so. 
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§4 CONTINUED FRACTIONS 
 
§4.1 Introduction 
 
Definition 

You can think of calculating the decimal expansion of a (positive) real 
number as the result of implementing the algorithm: 
 
(*) Make a note of the integer part of the number. Subtract this from the 
number.  This  gives a number x in the range [0,1). If x ≠ 0 then: 
  **  Multiply x by 10  ** 
This (perhaps) gives a number ≥ 1. Now repeat the loop from (*). 
 
We can replace the step at  **  ...  ** by anything else that makes x 
bigger. 
In particular, if we put in: 

  **  Take the reciprocal  of x  ** 

then we get the Continued fraction expansion of x. 
 
Example 

For example, if you start with  then you get  

which is written  or as [11; 2, 5, 1, 2]. 

 
If you have a calculator with a 1/x key, you can experiment with this. 
 
One can see that this is related to the calculation of the hcf of two numbers by 
the Euclidean algorithm. 
 
 424 = 37 ´ 11 + 17 
 37 = 17 ´  2 + 3 
 17 =  3  ´  5 + 2 
 3 =  2  ´  1 + 1 
 2 =  2  ´  1 + 0 
 
One can rewrite this as:  
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In general given  start with  (integer part) and then if  

write  and  then if  we take  etc. 

Definition 
The integers  are called the partial quotients. The real numbers  are 
called the complete quotients. 

 
The argument with the Euclidean algorithm above shows that every rational 
number has a continued fraction expansion  which terminates 
after a finite number of steps. The expansion is unique except that if the last 
partial quotient  = 1 then we may combine it with the previous one. 
 
In exactly the same way, we may define the continued expansion of an 
irrational number and in this case we get an expansion with an infinite number 
of terms. 
 
Examples 

If we apply the above process to some well-known irrationals we get: 

 = 1.618034 ... =  [1;  1, 1, 1, 1, ... ] 

 
√2 = 1.414214 ... =  [1;  2, 2, 2, 2, ... ] 
 
π = 3.141593 ... = [3;  7, 15, 1, 292, 1, 1, 1, 2, ... ] 
 
e = 2.718282 ... = [2;  1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1,  ... ] 
 
 
Euler discovered this last result and also: 

 = 0.761594 ... = [0;  1, 3, 5, 7, 9, 11, ... ] 
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Just as one can approximate a real number by truncating its decimal expansion, 
one can approximate a number given by a continued fraction by truncating its 
continued fraction expansion. 
 
Definition 

If a (positive) real number l has a continued fraction expansion  
 then the rational numbers  

 for n ≥ 0 are called the convergents of l. 

 
We can calculate the convergents recursively. 
 
Theorem 

The convergents  of  satisfy 

 and then 
 for n ≥ 2. 

 
 
Proof 

It is easy to check that  is as claimed for n = 0, 1.  

Then by induction assume the recurrence holds for k. 
 
Then  
 

  

 
which is what the recurrence relation gives with n = k + 1.    

 
Remark 

Note that the numerators and denominators both satisfy the same 
recurrence relation, similar to that defining the Fibonacci numbers. 
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Examples 
1) The convergents of the continued fraction:  [1;  1, 1, 1, 1, ... ] are 

   It is well-known 

that the ratios of successive Fibonacci numbers converge to . 

 
2) The convergents of the continued fraction [3;  7, 15, 1, 292, 1, 1, 1, 2, ... ] 

calculated for π are   

which have decimal approximations: 3, 3.142857... , 3.141509... , 
3.141592... , ... 

 
3) The convergents of our first (rational) example   [11; 2, 5, 1, 2] are 

 which 

finishes with the number we started with. 
 
Remarks 
1) We will see later that the sequence of convergents of the continued 

fraction of an irrational l does indeed converge to l. 
 
2) The numbers  and  whose ratios are the convergents are coprime. 
 
3) The numbers  increase as n increases. 
 
4) What we are considering are sometimes called simple continued fractions 

to distinguish them from the more general  . 

 
5) MAPLE has a command: convert(expr, confrac) which produces 

continued fractions. Use the Help to find out how to get the convergents. 
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§4.2 Approximating real numbers with rationals. 
 

The easiest way of approximating a real number l by a rational  is to divide 

up the real line into segments of length  and take the nearest multiple of this to 

l. One can then be sure that . 

For example one may approximate π by  to better that . 

 
Dirichlet proved one could do better than this. 
 
Theorem 

Given any real number l and integer Q one can find a rational  with     

q < Q such that . 

 
Proof 

We use the "pigeon-hole principle": With n pigeonholes and  
pigeons, at least one hole contains more than one pigeon. 
Consider the Q + 1 points in the interval [0, 1] given by:  0, {l}, {2l}, ... 
{(Q – 1) l}, 1 where { } means the fractional part.  

Divide up the unit interval into Q intervals of length  and we deduce 

that two of these must lie in the same sub-interval.  

That is . Hence for some integers p, q we must have 

 and so .      

 
Remark 

This is only an existence theorem. To find such an approximation we will 
use continued fractions. 
 

We start by deducing a corollary of the theorem of the last section. 
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Corollary 

The convergents  satisfy . 

 
Proof 

Using the above recurrence relations for  and  and induction we 
may prove  .Then divide by .   
 

From the definition above  with  and so 

 and l lies between  and . 

Thus l is closer than  to  as claimed earlier. 

 
Remarks 
1) Note that from the above corollary, the convergents are alternately larger 

( ) and smaller ( ) than l . 
 
2) In fact one may show that the sequence ( ) is monotonic decreasing 

and the sequence ( ) is monotonic increasing. (Both of course 
converge to l .) Thus the sequence of convergents alternately 
underestimate and overestimate the final limit. 

 

3) In fact one may show that the convergent  approximates l better 

than any rational number with a denominator smaller than  and so the 
approximations arising from continued fractions are in a sense best 
possible. 
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§4.3 Continued fractions of square roots 
 
It turns out that the square root of any integer has a periodic continued fraction 
(cf example 2 of §4.01). 

 
Another example 

Start with √7. 
 

     

    

  

  

  

 and the process then repeats itself. 

 
In general the continued fraction of a square root of an integer is of the form 

 which we write as . 

 
 
Remarks 
1) The periodic part of the continued fraction of  √N starts at . 
 
2) The periodic part has a very specific symmetrical form. In fact 

 always has the form . 
 e.g.   
 

3) As above, each  reduces to  and in fact the numbers  

satisfy  and . 

4) More generally any quadratic irrational of the form  with a, b 

and c integers and a not a square, has a periodic continued fraction (not 
necessarily starting at the beginning) and conversely. 
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Examples 

1) We showed earlier that the continued fraction of  is . 

 
2) l = [3;  3, 3, 3, 3, ...]  

Then  and so  and so

. 
 
 

3) l = [0;  3, 2, 3, 2, ...] 

Then  and so  and so . 
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§4.4 Pell's equation 
 
This is the equation  over the integers (d not a perfect square). 
  
It was called Pell's equation by Euler as a result of a misunderstanding of work 
by Wallis and Brouncker. In fact it had been studied earlier by Fermat and much 
earlier by the Indian mathematicians Brahmagupta and Bhaskara. One can 
indeed trace it back to work by Archimedes on approximating square roots. 
 
Examples 

d = 2  Solutions are (1, 0), (3, 2), (17, 12), (99,70), ... 
d = 5  Solutions are (1, 0), (9, 4), (161, 72), (2889,1292), ... 
Brahmagupta (628 AD) looked at d = 83 
Solutions are (1, 0), (82, 9), (13447, 1476), (2205226, 242055), ... 
 

Remarks 
1) Recall (§2. 2) that if d > 0 the norm of  in  is  and 

the norm satisfies N(uv) = N(u) N(v). So if  (x, y) is a solution of Pell's 
equation then  has norm 1 and so do all its powers. This allows 
us to generate an infinite number of solutions from a "fundamental" one. 
For example, if d = 5 the smallest non-trivial solution gives us  
whose square is  giving the next solution. Its cube is 

 and so on. 
 
2) It follows from the above that if  are the solutions of Pell's 

equation then the  satisfy a recurrence relation of the form 
 where . The  satisfy a similar one. 

 
We can find the fundamental solution to the equation using the continued 
fraction expansion of √d. 
 

Theorem  
If the continued fraction expansion of √d is  then the 

convergent  corresponding to the penultimate term of the first 

periodic block gives the fundamental solution  of the equation 
.  

So if k is even this is a solution of Pell's equation. If k is odd then we 
need to go to the last but one convergent of the next block. 
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In both cases all the penultimate convergents of the rest of the blocks give 
solutions of .        
 

Example 
Let d = 7 
From above we have √7 = [2;  1, 1, 1, 4, 1, 1, 1, 4, ...] so k = 4 and (after a 
little calculation) the convergents are:  = 

 and the solutions of  come from the 3rd, 7th, ... convergents 
and are: (8, 3), (127, 48), ... 
 
Note that  as in Remark 1) above. 
 
Let d = 10 
Then √10 = [3;  6, 6, 6, ...] so k = 1 and the convergents are 

  

The 0th convergent gives a solution of  and we need the 
next (19, 6) to get a solution of Pell's equation. 
(117, 37) satisfies  while (721, 228) is a solution of Pell's 
equation.  
Note that  
 
Brahmagupta's example: d = 83 
Then √83 = [9;  9, 18, 9, 18, ...] so k = 2 and the convergents are 

  

giving the solutions mentioned above. 
 
Note that  as usual. 
 

Remark 
You can find a proof of this last theorem in [2] pg 108 and in [3] pg 75. 
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§5 DIOPHANTINE EQUATIONS 
 
§5.1 Linear equations 
 
A Diophantine equation is one with integer solutions. It is named after 
Diophantus of Alexandria (see the exercise below). 
 
We start with linear equations. 

 
Theorem 

A Diophantine equation  (to be solved for x, y) has a solution 
if and only if d = hcf(a, b) divides c. 
 

Proof 
Since d divides a and b it divides  and so the condition is 
necessary. 
Conversely,  if c = md then use the Euclidean algorithm to write 

 and then x = mp, y = mq is a solution.     
 

Remarks 
1) Since the p, q in the above proof are not uniquely determined, if the 

equation has a solution it will have infinitely many. 
 
2) A similar result holds for equations in more than two variables. 
 
3) Diophantus would only have been interested in positive solutions. Then 

the problem is much harder. 
For example, J J Sylvester (1814 – 1897) sent the following puzzle to the 
Educational Times. 

I have a large number of stamps to the value of 5d and 17d only. 
What is the largest denomination which I cannot make up with a 
combination of these two different values? 
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§5.2 Higher order equations 
 
Here the problem is much harder. Finding the integer solutions of a general 
polynomial equation or even deciding whether such a solution exists is in 
general very difficult. 
 
One may sometimes prove results about non-existence using modular 
arithmetic. 
 
Example 

A numerical search for solutions of  suggests that there is 
no non-zero solution. Working modulo 3 should convince you of this 
fact! 

 
One quadratic case has attracted more attention than others - even going back to 
the Ancient Egyptians and Babylonians. 
 
Definition 

A Pythagorean triple (x, y, z) satisfies . 
 
We can characterise all such solutions. 
 
Theorem 

If (x, y, z) are coprime integers satisfying  with (say) y even, 
then  for some integers a, b. 

 
Proof 

Note that  and so we get a solution 
starting with any a, b. 
To see that such a, b exist, write the equation in the form 

. Since x, z are coprime it follows that that 
 and the other prime factors of x – z and x + z must 

be squared. Hence  as required.    
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§5.3 Fermat's Last Theorem 
 
Fermat (1636) wrote in his copy of Diophantus's Arithmetica (in the section 
dealing with Pythagorean triples): 

It is impossible to separate a cube into two cubes, a biquadrate into 
two biquadrates or in general any power beyond the second into two 
powers of the same degree. I have discovered a truly remarkable 
proof of this which this margin is too small to contain. 

 
That is:  with n > 2 has no solution in integers. 
 
Fermat gave the proof for n = 4;   Euler proved (though incompletely) the case 
n = 3 (in 1770), Dirichlet and Legendre did n = 5 in 1820 and Lamé proved it 
for n = 7 in 1839. 
 
Gauss gave a proof for n = 3 which used : 
 If , factorise the LHS:  and use the 

unique factorisation property in  to prove the result. 
 
Lamé (in 1847) thought he had a proof using  with z a pth root 
of 1 but unfortunately the proof required this ring to have the unique 
factorisation property (which it doesn't if p ≥ 23).  
 
Fermat's Last Theorem was finally proved by Andrew Wiles in 1994 using 
methods which would certainly not have been available to Fermat. 
  
Here is Fermat's proof for the case n = 4. It uses the "Method of descent". In 
fact it proves a slightly stronger result. 
 
Theorem 
 There is no positive integer solution to the equation . 
 
Proof 

If we are given a smallest such solution, then  is a Pythagorean 
triple with (say) y even and so . 
Now b must be even since if a were even and b odd then we would have 

 which is impossible. 
Then  is a Pythagorean triple and we have 

. Then  
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Since  are pairwise coprime we have 
 for integers e, f, g.  

Thus  and  and we get a contradiction to 
the assumption that we had started with the smallest solution.  
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§6 QUADRATIC FORMS 
 
The problem of writing an integer as a sum of squares  dates back to 
(and was solved by) Fermat. Later mathematicians (Euler, Lagrange, Gauss, 
etc.) investigated (for example) which integers could be written as (say) 

 or  etc.  
 

Definitions 
A (binary) quadratic form is a (homogeneous) polynomial  
  denoted (a, b, c). 
 
The discriminant of such a form is the integer d =  . 
 
A number n is said to be represented by a form f if we can find x, y such 
that . 
 

Remark 
This is the notation used by Lagrange, Kronecker, Dedekind and 
Davenport. Legendre, Gauss and Dirichlet used the notation 

 with the discriminant  which 

is –1 ´ (the determinant of the matrix). 
 

Two quadratic forms are "equivalent" if they can represent the same set of 
integers. 
 
Example 

If  then put  and then 
 and so the binary forms (1, 0, 1) 

and (1, -2, 2) are equivalent. 
 

More formally, we have 
 
Definition 

Two forms are said to be (unimodularly) equivalent if they differ by a 
unimodular transformation. 
  with ps – qr = 1 

That is if we have a matrix  with unit determinant such that 
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 . 

 
Remarks 
1) Two such forms will represent the same set of integers. 
 
2) Since the matrix P is invertible (over the integers) this is a symmetric 

relation.  It is in fact an equivalence relation. 
 
3) Since determinants are multiplicative, it follows that the discriminants of 

equivalent forms are equal. The converse is not true. For example, the 
forms  and  both have discriminant –12 but are 
not equivalent. 
 
 

Definitions 
A form is called definite if its discriminant d < 0. 
(Positive definite if in addition a > 0; negative definite if a < 0) 
 
A form is called reduced if either –a < b ≤ a < c or 0 ≤ b ≤ a = c 
 

Theorem 
Any positive definite form is equivalent to a reduced form. 
 

Proof 
If a > c then apply the unimodular transformations  to 
swap a and c. Then use  (which replaces b by b ± 2a) to 
make |b| < a.           

 
Remarks 
1) It is not obvious (but true) that every positive definite form is equivalent 

to a unique reduced form. 
 
2) The reduced form is the form with the smallest a for an equivalence class 

of definite forms. 
 
2) There are a finite number of reduced forms for any given discriminant. 
 (If f is reduced then  and so a, c and b ≤  ) 
 



 59 

3) The number of reduced forms for a given d is called the class number of 
d, written h(d).  

 For d = –3, –4, –7, –8, –11, –19, –43, –67, –163 the class number is 1. 
 For d = –12, –15, –16, –24, –27, –28, ... the class number is 2. 
 For d = –23, –31, ... the class number is 3. ... 
 For many values of d there is no positive definite form with this 

discriminant. 
 
4) In 1934 it was proved that there was at most one more discriminant with 

class number 1 other than those listed above; in 1966 it was proved that 
this "tenth discriminant" did not exist. 

 
5) Jacobi conjectured in 1832 (and Gauss did also) that one could calculate 

the class number C(d) of a discriminant –p with p prime in the following 
way. 
Let A be the sum of the quadratic residues mod p and let B be the sum of 

the non-residues. Then . 

This was proved by Dirichlet in 1838 and is known as Dirichlet's class 
number formula. 
 
e.g. Work modulo 23. 
qr = { 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18} which sum to A = 92 
The qnr sum to B = 161 – 92 = 69 and so C(–23) = 3. 
 

Definition 
A number n is said to be properly represented by a binary quadratic 
form f if  with x, y coprime. 
 

Theorem 
A number n can be properly represented by a binary form with 
discriminant d if and only if d has a square root modulo 4n. 
 

Proof 
Suppose . Then define  and take a = n, Then 
the form  has discriminant d and . 
 
Conversely, suppose that f has discriminant d and  with 

. Then for some q, s we have  and so f is 
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equivalent to a form  with . But  have the same 
discriminant and so mod n the equation  has a solution . 
 

Application 
Take  so that d = –4 and this is the only reduced form 
with this discriminant. 
So n can be properly represented as  if and only if –1 is a 
quadratic residue modulo all the primes dividing n. i.e. if and only if n is 
a product of primes of the form 2 or 4k + 1. 
Thus we get the result proved by Fermat: n is representable in the form 

 if and only if all the primes of the form 4k + 3 which divide n are 
present as even powers. 
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Exercises 

 
1) Euclidean Algorithm 

a) Write the Highest Common Factor of 129 and 1728 in the form          
129x + 1728y. 

 
b) If hcf(a,b) = 1 and ax + by = 1 show that x is determined up to integer 

multiples of b. 
 i.e. If we can also write ax' + by'  = 1 then x – x' is an integer multiple of 

b. 
 
c) More generally, if d = hcf(a,b) > 1 and ax + by  = d what choice do we 

have for x and y ? 
 
2) Chinese Remainder Theorem 
 Let  p and  q be coprime and suppose that pr + qs = 1 for integers r and s.  

Verify that the integer  x = prb + qsa  is a solution of the simultaneous 
congruences  

  x = a (modulo p) and  x = b (modulo q). 
 Show that this solution is unique modulo the product pq. 
 [This result can be traced back to mediaeval Chinese manuscripts, though 

the Greeks probably knew it too.] 
 Find a solution to the simultaneous congruences  
  x = 5 (modulo 13) and x = 7 (modulo 8).  
 
3) Euclid's proof of the infinitude of the primes 

a) Let the first n prime numbers be . Is the number  
always prime? How does this affect Euclid's proof of the infinitude of the 
primes? 

 
b) What about the number ? 

 
4) Primes of the form 4k – 1 
 If  are primes of the form 4k – 1, prove that the number  

 cannot have all its factors of the form 4k + 1. Imitate 
Euclid's proof to deduce that there are infinitely many primes of the form 
4k – 1. 

 Can one use the same method to prove that there are infinitely many 
primes of the form   4k + 1? 
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5) Hilbert's example of a system where factorisation is not unique 
 Let H be the set of numbers of the form 4k + 1 for k = 0, 1, 2, ...  i.e. H = 

{1, 5, 9, 13, ...} Call an element of H an H-prime if it cannot be written as 
a product of smaller numbers from H. 

 Write down the first ten H-primes. 
 Show that 693 can be written as a product of H-primes in two distinct 

ways. 
 
6) Ring isomorphisms 
 Show that the map from  to  given by  is an 

isomorphism of additive groups which is not a ring isomorphism. 
 Prove that the map  is a ring isomorphism. 
 Use the Euclidean algorithm to define a ring isomorphism from  

to  if m, n are coprime. 
 
7) Pseudo-primes 
 Show that 210 = 1 modulo 11 and 25 = 1 modulo 31. Deduce that 2340 = 

1 modulo 341 and that hence 341 is a pseudo-prime with respect to 2. 
 Use a similar argument to show that 91 is a pseudo-prime with respect to 

3. 
 Is 341 a pseudo-prime with respect to 3?  Is 91 a pseudo-prime with 

respect to 2?  
 Is 341 a strong pseudo-prime with respect to 2?  Is 91 a strong pseudo-

prime with respect to 3?  
 Prove that  1105  is a pseudo-prime with respect to any integer coprime to  

5,  13  and  17. 
 Prove that  1105  is not a strong pseudo-prime with respect to  2. 
 
8) Carmichael numbers 
 Suppose that a is coprime to 561. Use Fermat's Little Theorem to deduce 

that a560 = 1 modulo 3, 11 or 17.  
 Deduce that a560 = 1 mod 561 and so 561 is a Carmichael number. 
 Use a similar argument to prove that Ramanujan's number 1729 is also a 

Carmichael number. 
 [Hint: 1729 = 7 ´ 13 ´ 19] 
 Show, more generally, that for any integer t the number  
 (6t +1)(12t +1)(18t +1) is a Carmichael number whenever the three 

factors are prime numbers. 
 Hence find a larger Carmichael number than either of the above. Use 

MAPLE to find a really big one. 
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9) Calculating powers 
 If a is a fixed integer what are the minimum number of multiplications 

necessary to calculate: 
 (i)   a17 (ii)   a27 (iii)   a37 (iv)   a47 (v)   a57  
 
10) Converse of Wilson's theorem 
 Prove that if  then p is prime. 
 
11) Applications of Fermat’s Little Theorem 

a) If p and q are distinct primes, prove that . 
b) (Euler 1732) If a prime p does not divide a or b, prove that p divides 

. 
 Does this result still hold if p is composite ? 

 
12) Mersenne numbers 
 Use your calculator to find factors of the Mersenne numbers 223 – 1 and 

229 – 1.  
 (The next composite Mersenne number 237 – 1 is probably outside your 

range.) 
 
13) Perfect numbers 
 Show that any even perfect number is a triangular number.  
 (i.e. of the form 1 + 2 + ... + n for some integer n.) 
 Show that the reciprocals of the divisors of an even perfect number 

(including the number itself) sum to 2. 
 
14) Uniqueness of factorisation 
 If we do take notice of the order in which the factors (> 1) of a number 

are written down, show that 24 has 4 distinct factorisations, while 72 has 
10 distinct factorisations. 

 If n is the number  then how many different factorisations does n 
have, taking account of the order in which the factors are written? 

 
15) A quotation from Leonardo Fibonacci of Pisa (1170 – 1250) 

"If two numbers are relatively prime and have an even sum, and if 
the triple product of the two numbers and their sum is multiplied 
by the number by which the greater number exceeds the smaller 
number, there results a number which will be a multiple of twenty-
four." 

 Prove it! 
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16) Binomial coefficients 

 Prove that if p is prime then the binomial coefficient  is divisible by p 

for  1 ≤ k < p.  

 [Hint: In the quotient  one can never cancel out p.] 

 Use this fact and induction to give another proof of Fermat's Little 
Theorem. 

 Prove that if p is prime then the binomial coefficient  

modulo p for  1 ≤ k < p.  
 [Hint: Note that for any integer a  we have p – a = –a modulo p ] 
 
 
17) Powers of primes dividing factorials 
 Prove that the highest power of a prime p dividing n! is given by the sum 

 where [x] is the integer part of x and pt is the largest 

power of p ≤ n. 
 How many zeroes are at the end of 100! ? At the end of 1000! ? 

 
18) Bertrand's conjecture 
 Bertrand (1822 – 1900) conjectured that if n is any integer ≥ 2 then there 

is a prime in the interval  n ... 2n.  
 The Prime Number Theorem can be used to show that for any e > 0, there 

is an N such that if n > N there is a prime in any interval n ... (1 + e)n. 
Use the PNT to prove it for e = 1. 

Remark 
 Unfortunately the approximation in the version of the PNT proved in 

lectures is so crude that using this form one can only deduce that there is 
a prime in each interval of the form n ... 3n, but Chebyshev's version was 
good enough to prove the conjecture.  

 Paul Erdös (one of the mathematicians to prove the PNT by "elementary" 
methods) summarised Bertrand's conjecture as: 

Chebyshev said it and I'll say it again:  
"There's always a prime between n and 2n". 
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19) Wolstenholme’s Theorem (1872) 
 Let p > 3 be a prime. Prove that the numerator of the fraction  

   is divisible by p. 

 [Hint: multiplying through by (p – 1)! will not affect the value of the 
numerator modulo p.] 

  (In fact the numerator is divisible by  but this is harder to prove.) 
 
20) Fermat's factorising method 
 a) Which two-digit  numbers can be at the end of a perfect square ? 
 b) Use Fermat's method to factorize the number 33490021. 
 
21) Pollard's r-method 
 Use Pollard's r-method to factorise the number 391 = 17 ´ 23. (I've given 

you the factors to make it easy to find the hcf.) 
 If you know enough MAPLE, write a routine to handle bigger numbers 

and factorise  18223380144071. (You will need a sequence of length 
about 6000.) 

 
22) Fermat primes 
 Multiply out the expression   
    
 and hence prove that the Fermat number  is not prime. 

 
23) The Vigenère cipher 
 This cryptographic system dates from the 16th century and was widely 

believed to be "unbreakable" though Babbage cracked it (but did not 
publish how) in the 19th Century. 

 It uses a "keyword" which is written repeatedly under the text to be 
encoded. The letter of the keyword then describes how much to shift the 
letter above it. So, for example, if the keyword had the letter C, the letter 
above would be shifted by 3 places from D to G (say) or from Y to B etc. 

 Encode the word UNBREAKABLE using the keyword BANANA (a very 
bad choice!). 

 Decode the message   
 LYXLERQPNAXUQURWPRJPREVNAJRZFHW 
 which has been encoded using the keyword CAT. 
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 Show that such a cipher may be decoded by encoding the cipher text with 
an "anti-key" word. What is the anti-key word of CAT? 

 
24) RSA Cryptography 
 What would happen if you took the a product of three primes to use for 

encoding rather than a product of two primes? Or the square of a prime? 
 
25) Factorising a number if you know f 
 If n = pq with p, q distinct primes, prove that  
 n – f(n) = p + q – 1 and (p + q)2 = (p – q)2 + 4n. 
 Deduce that finding the value of the  f-function of a number is equivalent 

in difficulty to factorising it. 
 Given that f(14933) = 14688, factorise it. 
 
26) RSA 
 The number N = 1003 is to be used for RSA encoding with coding power 

c = 3. 
 Given that N can be factored as 17 ´ 59 calculate the decoding power. 
 Use your calculator to encode the message STANDREWS using 01 for 

A, 02 for B etc. and and then using a block length of 3.  
 You will have to use a computer to decode the message  
  726, 583, 979, 104, 072, 828, 655, 117 
 
27) Questions to ponder (or maybe try MAPLE on) 
 a) Is every odd integer  ≥ 3 either a prime or a sum of a prime and a power 

 of 2? 
 b) Is every even integer  ≥ 4 a sum of two primes? 
 
28) Calculations in the Gaussian integers 

a) Find a quotient and remainder on dividing the Gaussian integer 2 + 3i by 
2 + 2i ensuring that the norm of the remainder is less the the norm of       
2 + 2i.  

 How many different such quotients and remainders are there ? 
b) Find examples of pairs of Gaussian integers where there is a choice of  
 (i)  four quotients, (ii) three quotients,  (iii) two quotients, 
 (iv) just one quotient. 
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29) Factorising Gaussian integers 
a) Write the Gaussian integers 9 + 5i, 14 + 10i  and 55 + i as products of 

irreducibles in Z[i]. 
b) Factorise the Gaussian integers a = 5 + 3i and b = 7 + 8i and hence or 

otherwise find their highest common factor. Is this hcf unique? 
 

30) Sums of two squares 
a) Use the Gaussian integers to prove that if two integers can be written as 

the sum of two squares, so can their product. 
 Write (a2 + b2)(c2 + d2) as a sum of two squares. 
b) Write the integers  725 = 52 ´ 29  and  20808 = 23 ´ 32 ´ 172  as sums of 

two squares in as many ways as possible. 
c) Find a condition which guarantees that a number can be written as a sum 

of two non-zero squares in two different ways. 
 What are the smallest numbers which can be written as a sum of two non-

zero squares in three (respectively, four) different ways. 
 
31) Prove that –4 is a fourth power in Z[i].  What other integers have fourth 

roots in Z[i] but not in Z ? Are there any integers which have cube roots 
in Z[i] but not in Z ? 

 
32) Failure of unique factorisation. 
 Prove that the elements 2, 1 ± √–3 are irreducible in Z[√–3]. Deduce that 

the element 4 can be written as a product of irreducibles in Z[√–3] in two 
ways. 

 Find a number with two distinct factorisations in Z[√–5]. 
 
33) Quadratic number fields in R 
 Let d be a positive integer not divisible by a square > 1. If the norm of an 

element of the ring Z[√d]  is defined by N(a + b√d) =  show that 
N(uv) = N(u)N(v) for u, v in Z[√d]. 

 Show that the element 3 is not irreducible in Z[√2].  
 Work modulo 5 to show that there is no element in Z[√2] with norm 5 

and deduce that the element 5 is irreducible. 
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34) Calculations in the Eisenstein integers 
Let w be the complex cube root of 1 given by .   

Prove that the norm of a + bw in Z[w] is given by N(a + bw) = a2 – ab + 
b2. 
Show that any unit (an element with a multiplicative inverse) in Z[w] 
must have norm 1 and hence find all such units.  
If u is a unit and p is a 
prime in Z[w] prove that 
up is also a prime and 
deduce that the picture of 
primes in Z[w] will have 
six-fold rotational 
symmetry. 
Prove that if n is an integer 
and is a prime of the form 
6k + 5 then n is also a 
prime in Z[w]. 
Show that 2 is a prime in 
Z[w] but that 3 is not. 
 

Primes in Z[w] are shown here 
 

35) Sums of four squares. 
Show that if n = 7 (mod 8) then it cannot be written as a sum of three 
squares. 
In fact Legendre proved in 1798 that any number which is not of the form 

 can be written as a sum of three squares. 
Find integers u and v which can both be expressed as sums of three non-
zero squares, but whose product uv cannot be. 
Primes can be written as sums of two squares in a unique way. Is their 
representation as a sum of four squares unique? What about as sums of 
four non-zero squares? 

 

 



 69 

36) Primitive roots 
Which of the following have primitive roots?  12, 18, 42, 54, 266. 
Find the smallest integer of the form 4k + 2 which has no primitive root. 
Write down all the primitive roots of 10. 
Verify that 3 is a primitive root of 250. How many primitive roots are 
there for 250? 
Find some others besides 3. 
Verify that 7 is a primitive root of 5 but not of 25. Is 2 a primitive for 
both 5 and 25?  
Can you find a primitive which works for 5, 10, 25 and 50? 

 
37) Quadratic residues 

a)  Calculate the Legendre symbols  . 

b) Determine how many elements have square roots working modulo 630. 
List a few of them. 

c) Let q be a prime divisor of the number N = (p1p2...pm)2 – 2. Prove that 2 
is a quadratic residue mod q and hence that q is of the form 8k ± 1.  

 Prove that N cannot have all its divisors of the form 8k + 1. Adapt 
Euclid’s proof of the infinitude of the primes to prove that there are 
infinitely many primes of the form 8k + 7. 

d) By considering the number (p1p2...pm)2 + 2, prove that there are 
infinitely many primes of the form 8k + 3. 

 
38) Quadratic reciprocity 

Find those primes p for which the integer 5 is a quadratic residue.  
Find those primes p for which the integer 7 is a quadratic residue. 

Prove that  = 1 if p = 1 (mod 6) and –1 if p = 5 mod 6. 

 
39) Jacobi symbols 

Calculate the Jacobi symbols . 

Prove that if the Jacobi symbol  then a does not have a square 

root modulo b.  
 (A counterexamle to the converse was given in lectures. 
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40) The manual on the first computer I owned explained how the Random 

Number Generator on the ZX 81 worked. It used the fact that 65537 = 
216 + 1 is a prime and that hence the group Z65537 – {0} is a cyclic group 
under multiplication modulo 65537. The powers of a generator then list 
the elements of this group in apparently random order.The manual 
continues “Using the Law of Quadratic Reciprocity one can see that 75 is 
a primitive (i.e. a generator of the group) for this prime”. Use the Law to 
prove that 75 is not a quadratic residue and hence prove that 75 has order 
65536 and is hence a generator. 
 

41) Calculating continued fractions 

a) Calculate the continued fraction expansions of the rationals . 

b) Use your calculator to investigate the continued fraction expansions of 

 and . 

 
42) Convergents 

a) Use the convergents of the continued fraction expansion of e in §4.1 to 

find some good rational approximations to e. (  is a memorable one, 

if you get that far!) 
b) Use the convergents of the continued fraction expansion of √2 in §4.1 to 

find some good rational approximations to √2. 
c) When Archimedes performed his calculation of π he needed √3 as a 

starting point. In the absence of a decimal notation he showed that 
. Confirm his calculation by finding these fractions as 

convergents of the continued fraction expansion for √3. 
 
43) Continued fractions of square roots 
 Calculate the continued fraction expansions of √17 and √15 and verify 

periodicity. 
 Compare the rational approximations to √2 produced from continued 

fractions with those given by Newton's method applied to .  
Say, . 

 



 71 

44) Find the quadratic irrationals whose continued fraction expansions are 
 and . 

 
45) Pell's equation 

a) Find solutions for Pell's equation with d = 6 and d = 15. 
b) If (a, b) is a solution of  prove that  is also a 

solution. 
 More generally, prove Brahmagupta's result (about 600 AD) that if (a, b) 

and (A, B) are both solutions so is (aA + dbB, aB + bA). 
c) In fact Brahmagupta knew the more general result that if (a, b) is a 

solution of the equation  and (A,B) is a solution of the 
equation  then (aA + dbB, aB + bA) is a solution of 

. Prove this. 
 
46) Prove that  does not have a solution in the integers.  
 [Hint: Quadratic residues!] 
 How would you find a solution of ? 
 Find the general solution to the Diophantine equation . 
 
47) Solve Sylvester's problem of §5.1. Investigate the general problem of 

finding the largest denomination which cannot be made up with stamps 
with values a, b pence. 
 


