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You can find electronic versions of each of the lectures in the Maple folder on the 

L-drive on each of the computers in the microlab.  

You will not be able to change them there, but you can copy them into your own 

filespace and then you can play with them and modify the code to see what happens. 

If you want to remove all the output you can use the Remove output command on the 

Edit menu. 

In due course this folder will also contain copies of the practice exercises given at the 

end of each lecture and (eventually) solutions to the tutorial sheets. 

 

Some pages of summaries are at the end of this booklet. 
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Using Maple as a calculator 

As a calculator, Maple works like any electronic calculator, except that you have of put  ;  after each 
calculation and press the Return key. To move the cursor down to the next line without doing the 
calculation, use Shift-Return.
You can press the key when the cursor is anywhere in the red bit of the "group" and Maple will 
calculate for you.
You can go back and calculate with an earlier bit of code by clicking on the red bit and pressing
Return.

22/7-355/113; 
sqrt(45);

1

791

3 5

To get a decimal answer, use the  evalf (= evaluate as a floating point number ) function
The  %  stands for the last result Maple calculated (even if this was not the last thing on the screen --
remember you can go back and recalculate earlier results).

evalf(%); 
6.708203931

%%  stands for the last but one result. This time you can get the answer to  20 significant figures

evalf(%%,20);
6.7082039324993690892

Using a decimal point in your input tells Maple that you want the answer as a decimal.

sqrt(2.0);
1.414213562

Maple knows about !, which it calls  Pi (the capital letter is important) and will give it to very great 
accuracy.

Over the centuries mathematicians spent a lot of time calculating many digits of !. The methods 
developed included a series for arctan discovered by James Gregory,the first Regius Professor of 
mathematics at St Andrews.

 The English mathematician William Shanks published 707 places of ! in 1873 and it was not 
discovered until 1943 that the last 179 of these were wrong. 

The expansion of ! is now known to many billions of places.

evalf(Pi,1000);
3.1415926535897932384626433832795028841971693993751058209749445923078164062\

86208998628034825342117067982148086513282306647093844609550582231725359\

40812848111745028410270193852110555964462294895493038196442881097566593\

34461284756482337867831652712019091456485669234603486104543266482133936\

07260249141273724587006606315588174881520920962829254091715364367892590\
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36001133053054882046652138414695194151160943305727036575959195309218611\

73819326117931051185480744623799627495673518857527248912279381830119491\

29833673362440656643086021394946395224737190702179860943702770539217176\

29317675238467481846766940513200056812714526356082778577134275778960917\

36371787214684409012249534301465495853710507922796892589235420199561121\

29021960864034418159813629774771309960518707211349999998372978049951059\

73173281609631859502445945534690830264252230825334468503526193118817101\

00031378387528865875332083814206171776691473035982534904287554687311595\

62863882353787593751957781857780532171226806613001927876611195909216420\

199

22/7  is a well-known approximation for !.
This was known to the Greek mathematician Archimedes  about 250BC (and indeed earlier). 
A better, but less well-known approximation is 355/113.
This was discovered by the Chinese mathematician  Ch'ung Chi Tsu  in about 500AD.

Maple will calculate the difference between these two approximations and !.

evalf(22/7);
evalf(355/113);
evalf(22/7-Pi);
evalf(355/113-Pi);

3.142857143

3.141592920

0.001264489

2.66 10
-7

Maple knows about all the functions you have on your calculator: sqrt,  sin, cos, etc as well as exp,
log = ln, log[10] or log10 and lots more besides. 
It uses lower case letters for them.
The pallettes on the left of the screen (if you want to bother with them) will remind you of some of 
the functions.
To use the functions, put ( ) around what you evaluate. Maple works in radians, not degrees. If you 
want the answer as a decimal, you will have to ask for it.

sin(3);
sin(Pi/2);
sin(60* Pi/180);   the sine of 60°
evalf(%);
sqrt(2);
2^(1/2);
evalf(%,50);

sin 3

1
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1

2
 3

0.8660254040

2

2

1.4142135623730950488016887242096980785696718753769

Maple knows about some other functions your calculator (probably) can't handle. For example,
ifactor (for integer factorise) will write an integer as a product of prime numbers.

ifactor(123456789);

3
2
 3803  3607

The function factorial will calculate the product 1 ! 2  ! 3 !  ... !  n usually written n! 
Maple recognises the ! notation too.

factorial(5);
factorial(100);
ifactor(100!);

120

93326215443944152681699238856266700490715968264381621468592963895217599993\

22991560894146397615651828625369792082722375825118521091686400000000000\

0000000000000

2
97

 3
48

 5
24

 7
16

 11
9
 13

7
 17

5
 19

5
 23

4
 29

3
 31

3
 37

2
 41

2
 43

2

47
2
 53  59  61  67  71  73  79  83  89  97

You can even apply ifactor to a fraction:

ifactor(123456/234567);

2
6
 643

3  67  389

Help

To see the help files on a Maple command, type the command and highlight it. Then go to the Help 
menu and you will see an entry for the command. Alternatively, type ? and then the command. (You
don't even need a semi-colon!) .

?print

You can also use help(command); (and you do need the semi-colon!)

help(sin);

At the bottom of a help file, you will find some examples of how to use the command. (This is the 



5

O O 

O O 

O O 

O O 

most useful bit!) You can copy and paste these lines into your worksheet and look at what happens. 
Then you can change them to do what you want.

Each help file has a list of links to related topics at the bottom which may let you hunt down exactly 
what you want.

The Help menu also has a "Full text search" facility which will point you in the direction of any help
files where the word or phrase you enter is mentioned. This tends to produce too much output to be 
very useful!

Polynomial expressions

One of the most important things Maple can do is to calculate with expressions as well as numbers. 
Use the expand function to "multiply out".

(x+y)^5;
expand(%);

xC y
5

x
5
C 5 x

4
 yC 10 x

3
 y

2
C 10 x

2
 y

3
C 5 x y

4
C y

5

expand((sqrt(2*x)+sqrt(x))^6);

99 x
3
C 70 2  x

3

Maple will (sometimes) succeed in manipulating an expression to make it "simpler".
Use the function simplify.

(x^2-y^2)/(x-y);
simplify(%);

x
2
K y

2

xK y

xC y

Maple will factorise expressions as well -- if it can ! Use the factor function.

(x-y)^3*(x+y)^5;
expand(%);
factor(%);
factor((x-y)^3*(x+y)^5+1);
 
This last  is too difficult!

xK y
3
 xC y

5

x
8
C 2 x

7
 yK 2 x

6
 y

2
K 6 x

5
 y

3
C 6 x

3
 y

5
C 2 x

2
 y

6
K 2 x y

7
K y

8

xK y
3
 xC y

5

x
8
C 2 x

7
 yK 2 x

6
 y

2
K 6 x

5
 y

3
C 6 x

3
 y

5
C 2 x

2
 y

6
K 2 x y

7
K y

8
C 1

Maple will also handle ratios of polynomials in this way.
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expand(((x-y)^2+(x+y)^2)/(x^3-y^3));
simplify(%);
factor(%);

2 x
2

x
3
K y

3
C

2 y
2

x
3
K y

3

2 x
2
C y

2

x
3
K y

3

2 x
2
C y

2

xK y  x
2
C x yC y

2

Maple can simplify polynomials in some other ways. In particular, you can ask it to collect together 

the terms in (say) x
n
  using the collect   function.

(The sort function works in a similar way.)

(x-2*y)^4+(3*x+y)^3;
expand(%);
collect(%,y);
collect(%,x);

xK 2 y
4
C 3 xC y

3

x
4
K 8 x

3
 yC 24 x

2
 y

2
K 32 x y

3
C 16 y

4
C 27 x

3
C 27 x

2
 yC 9 x y

2
C y

3

16 y
4
C K32 xC 1  y

3
C 24 x

2
C 9 x  y

2
C K8 x

3
C 27 x

2
 yC x

4
C 27 x

3

x
4
C K8 yC 27  x

3
C 24 y

2
C 27 y  x

2
C K32 y

3
C 9 y

2
 xC 16 y

4
C y

3

You can find the coefficient of a given power of (say)  x

coeff(%,x^3);
coeff(%%,x,0);

K8 yC 27

16 y
4
C y

3

Trigonometric expressions

Maple will handle many trigonometric identities using the expand function. It won't factor back 
again though !

sin(x+y);
expand(%);
factor(%);

sin xC y

sin x  cos y C cos x  sin y

sin x  cos y C cos x  sin y

You can use Maple to expand cos(n x) for different values of the integer n and get polynomials in 
cos(x). 
These polynomials were first investigated by the Russian mathematician Pafnuty Chebyshev  (1821 
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to 1894). They are very important in Numerical Analysis.

cos(5*x);
expand(%);
cos(12*x);
expand(%);

cos 5 x

16 cos x
5
K 20 cos x

3
C 5 cos x

cos 12 x

2048 cos x
12
K 6144 cos x

10
C 6912 cos x

8
K 3584 cos x

6
C 840 cos x

4

K 72 cos x
2
C 1

Maple will (sometimes) simplify trigonometric expressions.

sin(x)^2+cos(x)^2;
simplify(%);

sin x
2
C cos x

2

1

Though sometimes the answer isn't what you might expect.

simplify(1-sin(x)^2);
simplify(1/(1+tan(x)^2));

cos x
2

1

1C tan x
2

You may have to help it a bit:

simplify(cos(x)^2-1/(1+tan(x)^2));
0

Assigning

Maple will store things (numbers, expressions, functions, ...) in "containers" or "variables".
Think of these as labelled boxes. This process is called assignment.

p:=15;
q:=75;
p/q;

p := 15

q := 75

1

5

One can also store expressions in these boxes. 
One can then apply any Maple function to the contents of the box.
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quad:=(x+2*y+3*z)^2;
expand(quad);
collect(quad^2,z);

quad := xC 2 yC 3 z
2

x
2
C 4 x yC 6 x zC 4 y

2
C 12 y zC 9 z

2

81 z
4
C 108 xC 216 y  z

3
C 18 xC 2 y

2
C 6 xC 12 y

2
 z

2
C 2 xC 2 y

2
 6 x

C 12 y  zC xC 2 y
4

One has to be a bit careful, however.

c:=a+b;
a:=1;b:=3;
c;

c := aC b

a := 1

b := 3

4

If we now change either  a or b, Maple remembers that c contains a+b and will change c too.

a:=5;
c;

a := 5

8

However, if we had already assigned numbers before we put them into the box, Maple will just put 
in the number !

x:=1;y:=3;
z:=x+y;
z;

x := 1

y := 3

z := 4

4

and this time altering one of the numbers will not alter anything else.

x:=5;
z;

x := 5

4

To "empty" one of our boxes or variables we unassign it, using:

a:='a';
a;
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c;
a := a

a

aC 3

To unassign all the variables, use restart;

a;b;c;
restart;
a;b;c;

a

3

aC 3

a

b

c

One can use this process to evaluate an expression.

f:=x^2+1;
x:=1.5;f;
x:=2.5;f;
x:=3.5;f;

f := x
2
C 1

x := 1.5

3.25

x := 2.5

7.25

x := 3.5

13.25

Substituting

Evaluating an expression f in x can be done using the subs function. 
This does not assign anything to x.

restart;
f:=x^2+1;
subs(x=1.5,f);
subs(x=2.5,f);
subs(x=3.5,f);
x;

f := x
2
C 1

3.25
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7.25

13.25

x

Note, however, that if x already has a value assigned to it, you won't get what you want !

x:=1;
subs(x=3.5,f);

x := 1

2

You can also use the subs function to substitute one expression for another.
It will do several substitutions at the same time.

restart;
subs(x=y+5,x^5*sin(x));
subs(x=y+5,z=y-5,x^2+y^2+z^2);
simplify(%);

yC 5
5
 sin yC 5

yC 5
2
C y

2
C yK 5

2

3 y
2
C 50

We can illustrate this with the process of simplifying a general cubic equation

cub:=a*x^3+b*x^2+c*x+d;
t:=subs(x=y+k,cub);
collect(t,y);

cub := a x
3
C b x

2
C c xC d

t := a yC k
3
C b yC k

2
C c yC k C d

a y
3
C 3 a kC b  y

2
C 3 a k

2
C cC 2 b k  yC a k

3
C dC c kC b k

2

Now we replace k by b/3a to remove the y
2
 term. This substitution is known as a Tschirnhaus 

transformation after the 17th Century German mathematician who first used it. It is analagous to the
process of completing the square for quadratic equations and is the first stage in reducing a cubic 
equation to a form in which it can be solved

subs(k=-b/(3*a),%);

a y
3
C K

1

3
 

b
2

a
C c  yC

2

27
 

b
3

a
2
C dK

1

3
 

c b

a

Differentiating

Maple will differentiate expressions. You have to tell it what to differentiate with respect to. 
Anything else will be treated as if it were a constant. 
This process is actually Partial Differentiation .
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diff(x^3,x);
diff(a*x^2+5,x);
diff(a*x^2+5,a);

3 x
2

2 a x

x
2

If you try to differentiate with repect to something which has had a value assigned to it, Maple will 
complain. Unassign the variable or use restart to be safe !

x:=1;
diff(x^4,x);

x := 1

Error, invalid input: diff received 1, which is not valid for 
its 2nd argument

x:='x';
diff(x^4,x);

x := x

4 x
3

Maple uses the function Diff (with a capital letter) to write out the formula for the derivative, but 
without actually doing the differentiation. 
(It knows when the differention is partial.)

Diff(x^4,x);
Diff(x^4*y^4,x);
Diff(x^9,x)=diff(x^9,x);

d

dx
 x

4

v

vx
 x

4
 y

4

d

dx
 x

9
= 9 x

8

Maple will differentiate more than once -- with respect to the same variable or different variables.

diff(x^3+y^3+3*x^2*y^2,x,x);
diff(x^3+y^3+3*x^2*y^2,x,y);

6 xC 6 y
2

12 x y

As a short cut, if you want to differentiate (say) 4 times wrt the same variable, you can use x$4.

diff((1+x^2)^3,x$4); 

360 x
2
C 72

The French mathematician Adrian-Marie Legendre (1752 – 1833) defined some important 
polynomials in connection with solving the problem of how the gravitational effects of the moon 
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and sun affected the tides.
In the past, mathematicians had to look up the coefficients in tables, but Maple can calculate them 
very easily.

n:=7;
diff((x^2-1)^n,x$n)/(n!*2^n);
collect(%,x);

n := 7

x
7
C

21

2
 x

2
K 1  x

5
C

105

8
 x

2
K 1

2
 x

3
C

35

16
 x

2
K 1

3
 x

429

16
 x

7
K

693

16
 x

5
C

315

16
 x

3
K

35

16
 x

Defining functions

One can store functions in Maple's "boxes" as well as numbers or expressions. 
A function is a "rule" for assigning a value to a number.

Note that although we may use x in the definition of a function, the function itself is not an 
expression in x.
Here x is what is called a "dummy variable".

f:=x->x^3;
f(1.4);
f(y);

f := x/x
3

2.744

y
3

g:=y->sin(y);
g := y/sin y

Once we have defined two such functions we can then compose them by applying one to the other. 
It usually matters which order we do this in.

f(g(x));
g(f(x));

sin x
3

sin x
3

We may use the same method as above to define functions of two (or more) variables.
The pair of variables must be in brackets with a comma between them.

f:=(x,y)->x^2+y^2;
f(0,0); 
f(1,2);

f := x, y /x
2
C y

2

0
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5

Maple differentiates expressions, not functions. 
If you have defined a function f and want to differentiate it with respect to x, then you will have to 
turn it into an expression by evaluating it at  x by using f(x).

f:=x->x^3;
diff(f,x);

f := x/x
3

0

diff(f(x),x);

3 x
2

You can however, use the operator D which acts on a function  to produce a function .

D(f);

x/3 x
2

Note that this means you can't use D as the name of a variable.

D:=5;
Error, attempting to assign to `D` which is protected

Formatting worksheets

To put in comments (like this paragraph!) when the cursor is at a Maple prompt  >  either use the
Insert text item from the Insert menu, or the keyboard shortcut Control-T or click on the  T  on the 
Tool bar.

When you have finished, start a new Execution group  (what Maple calls the group enclosed by the 
bracket at the left) by using the item Execution group in the Insert menu, by using one of the 
keyboard  shortcuts Control-K or Control-J or clicking on the  [>  on the Tool bar. 

You can use the same method to get a new execution group anywhere in your worksheet and then, if
you wish, you can use this to insert some explanatory text. The Edit menu has a Join command 
which lets you put the comment in the same group as the command.

You can also put comments on the same line as Maple input. You get the y
2
 by inserting "non-

executable maths text" from the Insert menu or using the short cut Control-R.

x:=y^2;     this assigns the value y
2
 to the variable x. 

You can make a "collapsible section" which you can 'expand' by clicking on the   +  symbol or 
'contract ' by clicking on the  -  symbol. Do this by selecting what you want to put into it and then 
selecting Indent from the Format menu or the        symbol from the Tool bar. To get rid of such a 
section select  Outdent from the Format menu or the         symbol from the Tool bar. When you 
have made such a section you can type a heading next to its symbol to label it.
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Plotting

Maple will plot the graph of a function y = an expresssion involving x on a given interval which you 
specify (as as a range) by (say) x = 0 . . 1.
If you don't specify a range Maple will take  -10 .. 10.
You can click on the picture to see the coordinates of the cursor. Enlarge the picture (using the
View menu or Control- 0 to 6) to get a better idea .

plot(x*(x^2-1),x=-2..2);

x

K2 K1 0 1 2

K6

K4

K2

2

4

6

You can't plot using a variable that has been assigned to without a bit of trouble.

x:=1;plot(x*(x^2-1),x);
x := 1

Error, (in plot) invalid arguments

You need to put in some 'single quotes'

plot('x*(x^2-1)*(x+2)','x'=-3..3,-2..2);

x

K3 K2 K1 0 1 2 3

K2

K1

1

2

Maple will plot several functions on the same axes. Put the expressions to plot into a list (with [ ] 
brackets round them) or a set (with { } brackets around them). Maple will use different colours for 
the output (some of which do not print very well -- though you can specify the colours if you want).
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restart;
f:=x^3-x;
plot([f,diff(f,x),diff(f,x$2)],x=-2..2,colour=[black,red,
blue]);

f := x
3
K x

x
K2 K1 0 1 2

K10

K5

5

10

Maple will choose the vertical axis so that all the graphs fit in. If you don't want this, you can 
specify the vertical range. Leave out the " y=" if you don't want the axis labelled.

plot([x,x^2,x^3,x^4,x^5],x=0..2,y=0..2,colour=black);

x
0 0.5 1 1.5 2

y

0

0.5

1

1.5

2

Maple will plot expressions. If you have defined a function f you can turn it into an expression by f

(x).

f:=x->sin(x)/x;
plot(f(x),x=-1..1);

f := x/
sin x

x
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x
K1 K0.5 0 0.5 1

0.86

0.90

0.96

1.00

If you want, you can plot the function directly -- but then you musn't mention x at all.

plot(f,x=0..20);
Error, (in plot) invalid plotting of procedures, perhaps you 
mean plot(f, 0 .. 20)

plot(f,0..20);

5 10 15 20
K0.2

0

0.2

0.4

0.6

0.8

1.0

You can also plot curves given parametrically:

plot([cos(t),sin(t),t=0..2*Pi]);

K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

You can plot Lissajous figures, named after the French mathematician Jules Lissajous(1822 to 
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1880):

plot([cos(3*t),sin(5*t),t=0..2*Pi]);

K1 K0.5 0 0.5 1

K1

K0.5

0.5

1

You can even use polar coordinates:

plot([1/t,t,t=1..10],coords=polar);

K0.3 K0.1 0 0.1 0.2 0.3 0.4 0.5

K0.2

0.2

0.4

0.6

0.8

One can also specify the colours of the various graphs, or choose to plot them with dots, crosses, ...
You can find out about this using the help facilities on plot which you can get by typing in ?plot.

Plotting in 3 dimensions

Plotting in three dimensions works similarly. You can then click on the picture to move it around.

plot3d(x^2-y^2,x=-5..5,y=-5..5);
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There are lots of options you can specify for plot3d. See ?plot3d or ?plot3d[options]. For example, 
you can specify the vertical range.

plot3d(x^2+y^2,x=-5..5,y=-5..5,view=0..25);

One can plot more than one function (using { } this time). For example, cut a cone with a plane to 
get a parabola:

plot3d({sqrt(x^2+y^2),x+y+1},x=-1..1,y=-1..1,view=0..1);
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or a double cone with a plane to get a hyperbola:

plot3d({sqrt(x^2+y^2),-sqrt(x^2+y^2),x+2*y+1/2},x=-1..1,y=-1.
.1,view=-1..1);
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One can also plot parametrically, by specifying formulae for the x, y, z coordinates. (This is where 
you use [ ] brackets.)

plot3d([(2+cos(q))*cos(p),(2+cos(q))*sin(p),sin(q)],p=0..2*Pi,
q=0..2*Pi,view=-2..2);    a torus
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O O plot3d([sin(p)*cos(q),sin(p)*sin(q),cos(p)],p=0..Pi,q=0..2*Pi,
view=-1..1);    a sphere

Three-dimensional Lissajous figures:

plot3d([sin(2*p),sin(3*p),cos(5*p)],p=0..2*Pi,q=0..1,view=-1.
.1,numpoints=5000,thickness=3);

There are lots of other things you can explore with these functions!

plot3d(1.5^x*sin(y),x=-1..2*Pi,y=0..Pi,coords=spherical);
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Integration

The process of integrating is much older than differentiating and goes back to the Ancient Greeks. 

For example, Archimedes' efforts to measure the area of a circle ( and hence calculate a value for !) 
in about 250BC are equivalent to trying to integrate a function. 
Maple will calculate indefinite integrals when it can, but quite "easy" functions may be difficult 
even for Maple.
If you differentiate the integral, you should get back to where you started.

int(x^5,x);
diff(%,x);

1

6
 x

6

x
5

f:=int(sqrt(1+sqrt(x)),x);
simplify(f);
g:=diff(f,x);
simplify(g);

f := K

K
8

15
 ! K

4

15
 !  1C x

3/2
 3 x K 2

!
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8

15
C

4

15
 1C x  x C

4

5
 1C x  xK

8

15
 1C x

g := K

K
1

5
 

!  1C x  3 x K 2

x
K

2

5
 

!  1C x
3/2

x

!

1C x

Sometimes Maple can't do it. But it still knows how to get back when it differentiates.

f:=int(cos(sqrt(1+x^2)),x);
diff(f,x);

f := cos 1C x
2

dx

cos 1C x
2

Sometimes it can do the integral but it isn't much help.

int(cos(1+x^3),x);

1

6
 cos 1  !  2

1/3
 

9

2
 

2
2/3

 
2

7
 x

6
C

2

3
 sin x

3

!  x
2

C
3 2

2/3
 cos x

3
 x

3
K sin x

3

!  x
2

K
9

7
 

x
7
 2

2/3
 sin x

3
 LommelS1

11

6
,

3

2
, x

3

!  x
3 11/6

K

3 x
7
 2

2/3
 cos x

3
 x

3
K sin x

3
 LommelS1

5

6
,

1

2
, x

3

!  x
3 17/6

K
1

6
 sin 1  !  2

1/3
 

3

4
 

x 2
2/3

 sin x
3

!
K

9

4
 

x 2
2/3

 cos x
3

 x
3
K sin x

3

!

K
3

4
 

x
7
 2

2/3
 sin x

3
 LommelS1

5

6
,

3

2
, x

3

!  x
3 11/6

C
9

4
 

x
7
 2

2/3
 cos x

3
 x

3
K sin x

3
 LommelS1

11

6
,

1

2
, x

3

!  x
3 17/6

Remember, however, that integration should involve a "constant of integration" and so if you 
integrate a derivative, the answer may look different.
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f:=(1+x^2)^2;
g:=diff(f,x);
h:=int(g,x);
f-h;
simplify(f-h);

f := 1C x
2 2

g := 4 1C x
2

 x

h := x
4
C 2 x

2

1C x
2 2

K x
4
K 2 x

2

1

Maple will calculate integrals of trigonometric functions which would be very tedious to tackle "by 
hand". In every case, differentiation should bring you back to where you started but it might be a bit 
of a struggle.

f:=int(tan(x)^3,x);
g:=diff(f,x);
simplify(g);

f:=sin(x)^3/(1+cos(x)^3);
g:=int(f,x);
h:=diff(g,x);
simplify(h);
simplify(h-f);

f :=
1

2
 tan x

2
K

1

2
 ln 1C tan x

2

g := tan x  1C tan x
2

K tan x

tan x
3

f :=
sin x

3

1C cos x
3

g :=
1

2
 ln 1K cos x C cos x

2
K

1

3
 3  arctan

1

3
 K1C 2 cos x  3

h :=
1

2
 

sin x K 2 cos x  sin x

1K cos x C cos x
2

C
2

3
 

sin x

1C
1

3
 K1C 2 cos x

2

K
sin x  K1C cos x

1K cos x C cos x
2

0

Although one can repeatedly integrate a function, there is no shorthand for multiple integration as 
there is for multiple differentiation. 

f:=x^2-sin(2*x);
int(%,x);
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int(%,x);
int(%,x);
int(%,x);
int(f,x,x,x,x);   This only integrates once.

f := x
2
K sin 2 x

1

3
 x

3
C

1

2
 cos 2 x

1

12
 x

4
C

1

4
 sin 2 x

1

60
 x

5
K

1

8
 cos 2 x

1

360
 x

6
K

1

16
 sin 2 x

1

3
 x

3
C

1

2
 cos 2 x

Maple will also do definite integrals. It will give an exact answer if it can.
Note the way you specify the range of integration: x = 0 . . 1 etc  

int(x^4,x=0..1);
int(sin(x)^2,x=0..Pi);

1

5

1

2
 !

The calculation mentioned above that Archimedes used to calculate " (t he quadrature of the circle ) 
is equivalent to the integral:

int(sqrt(1-x^2),x=-1..1);
1

2
 !

Maple will (sometimes) handle integrals over infinite ranges as well as integrals over ranges where 
the function goes off to infinity.

int(exp(-x),x=0..infinity);
int(exp(x),x=0..infinity);
int(tan(x),x=0..Pi/2);
int(tan(x),x=0..Pi);

1

N

N

undefined

Even if it can't work out exactly what the answer is, you can ask it
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to do a numerical integration by using the evalf function.

k:=int(cos(sqrt(1+x^2)),x=0..1);
evalf(k);

k :=
0

1

cos 1C x
2

dx

0.4074043129

As in the differentiation case, Maple will write out the formula for the derivative if you ask for Int 
(with a capital letter).

Int(cos(x)^2,x);
Int(cos(x)^2,x=0..Pi);
evalf(%);
Int(cos(x)^5,x)=int(cos(x)^5,x);

cos x
2

dx

0

!

cos x
2

dx

1.570796327

cos x
5

dx =
1

5
 cos x

4
 sin x C

4

15
 cos x

2
 sin x C

8

15
 sin x

Solving equations

Maple will try and solve equations. You have to give it the equation and tell it what to solve for. If 
there is only one variable in the equation, it will solve for that without being told. If you give it an 
expression instead of an equation, it will assume you mean  expression = 0.

solve(7*x=22,x);
solve(7*x=22);
solve(7*x-22);
solve(all_my_problems);

22

7

22

7

22

7

0

Maple will solve equations which have more than one solution.

solve(a*x^2+b*x+c=0,x);
solve(x^3-2*x^2-5*x+1=0,x);
evalf(%,4);
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K
1

2
 

bK b
2
K 4 a c

a
, K

1

2
 

bC b
2
K 4 a c

a

1

6
 316C 12 I 2355

1/3
C

38

3 316C 12 I 2355
1/3

C
2

3
, K

1

12
 316

C 12 I 2355
1/3

K
19

3 316C 12 I 2355
1/3

C
2

3
C

1

2
 I 3  

1

6
 316

C 12 I 2355
1/3

K
38

3 316C 12 I 2355
1/3

, K
1

12
 316C 12 I 2355

1/3

K
19

3 316C 12 I 2355
1/3

C
2

3
K

1

2
 I 3  

1

6
 316C 12 I 2355

1/3

K
38

3 316C 12 I 2355
1/3

3.390K 0.0003 I, K1.576K 0.0007660 I, 0.1871C 0.0009660 I

A short cut if you only want to see the decimal expansion is to use the function fsolve.

Usually, fsolve will only give the real roots of the equation. There are ways of getting complex roots
out of it. If you want to know what they are then you can consult the Help facilities for fsolve.

fsolve(x^3-2*x^2-5*x+1=0,x);
K1.575773473, 0.1872837251, 3.388489748

If you want to find solutions in a particular range you may have to specify it

fsolve(sin(x),x=3..4);
3.141592654

Maple will solve simultaneous equations.
You have to enter the equations as a "set" (with { } round them and commas between). 
If you want to solve for several variables, you have to enter these as a set too. If you leave out the 
variables you want to solve for, Maple will assume you want all of them.

solve({y=x^2-4,y=-2*x-2},{x,y});
solve({y=x^2-4,y=-2*x-2});
evalf(%);

y =K2 RootOf 2 _ZK 2C _Z
2
, label = _L2 K 2, x = RootOf 2 _ZK 2C _Z

2
, label

= _L2

y =K2 RootOf 2 _ZK 2C _Z
2
, label = _L4 K 2, x = RootOf 2 _ZK 2C _Z

2
, label

= _L4

y =K3.464101615, x = 0.7320508076

and of course, you can use fsolve  here too.
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fsolve({y=x^2-4,y=-2*x-2},{x,y});
y =K3.464101615, x = 0.7320508076

You can then use the plot facility to see the intesection of the two curves. Then you see that we've 
missed one of the solutions

plot({x^2-4,-2*x-2},x=-3..1,colour=black);

x
K3 K2 K1 1

K4

K3

K2

K1

1

2

3

4

5

We can find the missing one by specifying ranges

fsolve({y=x^2-4,y=-2*x-2},{x=-3..0,y=0..5});
y = 3.464101615, x =K2.732050808

If there is more than one solution you can pick out the one you want using [1] or [2] or ...

f:=x^2+3*x+1;
sol:=solve(f=0,x);
evalf(sol[1]);

f := x
2
C 3 xC 1

sol :=
1

2
 5 K

3

2
, K

3

2
K

1

2
 5

K0.381966012

and then you can draw the graph to see where it is

plot(x^2+3*x+1,x=-1..0);
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x

K1 K0.8 K0.6 K0.4 K0.2 0

K1

K0.5

0.5

1

As an illustration of how this can be used, we will calculate the equation of the tangent to a curve y 
= f(x)  at some point x

0
 say.

Recall that if the tangent is y = mx  + c the gradient m is the derivative at x = x
0
. Then we have to 

choose the constant c so that the line goes through the point ( x
0
, f(x

0
))

f:=x->sin(x); 
x0:=0.6;

fd:=diff(f(x),x);
m:=subs(x=x0,fd);
c0:=solve(f(x0)=m*x0+c,c);
y=m*x+c0;
plot([f(x),m*x+c0],x=0..1,y=0..1,colour=black);

f := x/sin x

x0 := 0.6

fd := cos x

m := cos 0.6

c0 := 0.06944110450

y = 0.8253356149 xC 0.06944110450
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x
0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

You could now go back and alter the function  f and the point x
0
 and run the same bit of code to 

calculate the equation of the tangent to anything!

As a further illustration, we consider the problem  of finding a tangent to a circle from a point 
outside the circle.

The circle (well, semi-circle, actually) can be specified by y = !(1+x
2
) and we'll find a tangent to it 

from the point (say) (0, 2).
We first use the same method as above to calculate the equation of the tangent to the curve at a
variable point x

0

We'll begin by unassigning all our variables and then use a similar bit of code to that used above.

restart;
f:=x->sqrt(1-x^2);

fd:=diff(f(x),x);
m:=subs(x=x0,fd);
c0:=solve(f(x0)=m*x0+c,c);
y=m*x+c0;

f := x/ 1K x
2

fd := K
x

1K x
2

m := K
x0

1K x0
2

c0 :=
1

1K x0
2

y =K
x0 x

1K x0
2

C
1

1K x0
2

Then vary x
0
 until the tangent goes through the point (0.2).

We'll make x
1
 the value of x

0
 when this happens. 

Since this produces two answers, we'll choose one of them.
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The gradient m
1
 of the tangent is then the value of m at this point and the intercept c

1
 on the y-axis is 

the value of c
0
 at this point.

So we can find the equation of the tangent:  y = m
1
x + c

1
.

x1:=solve(subs(x=0,y=2,y=m*x+c0),x0)[1];
m1:=subs(x0=x1,m);
c1:=subs(x0=x1,c0);
y=m1*x+c1;

x1 := K
1

2
 3

m1 :=
1

2
 4  3

c1 := 4

y =
1

2
 4  3  xC 4

We'll plot the answer to see if it really works.

plot([f(x),m1*x+c1],x=-2..2,y=-1..2,colour=black);

x

K2 K1 0 1 2

y

K1

1

2

Asking Maple for the second solution above would give another tangent to the circle.

You could now replace x = 0, y = 2 by any other point and work out the equation of the tangents 
going through that point.

Looping

There are several ways to get Maple to perform what is called a "loop".
The first is a for-loop. You put what you want done between the do and the end do.
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Use Shift-Return to get a new line without Maple running the code.

for i from 1 to 5 do
x:=i;
end do;

x := 1

x := 2

x := 3

x := 4

x := 5

It is often better to stop Maple printing out everything it does. You can do this by putting a : (a 
colon) after the loop instead of ; (a semi-colon). 
Putting a : instead of a ; after any command will stop Maple from printing it out as it executes the 
command.
However, if you do want it to print something about what is going on, you can ask for it with a print 
command.
 

for i from 1 to 5 do
x:=i;
print(x);
end do:

1

2

3

4

5

If you want to include some text, you can include it in "back quotes" (between the left-hand shift 
and the z). 
Single words (which Maple will interpret as variables) can get away without quotes, but more than 
one word can't. See below for the effect of the usual ".

print(one_word);
print(`two words`);
print("two words");

one_word

two words

"two words"

print(two words);
Error, missing operator or `;`

There is another forms of  for-loop: one in which we get the variable to increase itself by more than 
one between implementing the things in the loop:

for i from 1 to 15 by 3 do
x:=i;
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print(`the value of x is `,x);
end do:

the value of x is , 1

the value of x is , 4

the value of x is , 7

the value of x is , 10

the value of x is , 13

As an illustration of what to do with a loop, we calculate the sum of an Arithmetic Progression  (AP) 
to several terms  e.g.   3, 5, 7, 9, ... We will suppress printing in the loop.
Suppressing printing has the effect of speeding things up, since it takes Maple much longer to print 
than to calculate.

a:=1;d:=2;
term:=a:
total:=0:
for i from 1 to 100 do
total:=total+term;
term:=term+d;
end do:
total;

a := 1

d := 2

10000

In a similar way, we can calculate the sum of a Geometric progression (a GP)  like   3, 6, 12, 24,  ...

a:=3;r:=2;
term:=a:
total:=0:
for i from 1 to 20 do
total:=total+term;
term:=term*r;
end do:
total;

a := 3

r := 2

3145725

As an illustration of another kind of loop we answer the question of how many terms of a GP we 
need to take before the sum is > (say) 10000 ? 
We use a while-loop which will be implemented until the "boolean expression" in the first line of 
the loop becomes False. A boolean expression, named after the English mathematician George 

Boole (1815-1864) who was one of the first to apply mathematial techniques to logic, is something 
which takes the values either True or False.

a:=3;
r:=1.1;

term:=a:total:=0:
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count:=0:
while total < 10000 do
total:=total+term;
term:=term*r;
count:=count+1;
end do:
count;

a := 3

r := 1.1

61

If clauses

We now show how Maple can make a choice of several different things to do. This branching is 
controlled by soething called an if-clause. We put what we want Maple to do between the then and 
the end if.
 Here is an example.

a:=90;
if a>60 then print(`a is bigger than 60 `);end if;

a := 90

a is bigger than 60 

In the above, if the boolean expression (between the if and the then) is False, then nothing gets done.
We can alter that:

a:=50;
if a > 60 then print(`a is bigger than 60 `);
else print(`a is smaller than 60 `);end if;

a := 50

a is smaller than 60 

You can put in lots of other alternatives using elif (which stands for else if).

a:=50;
if a > 60 then print(`a is bigger than 60 `);
elif a > 40 then print(`a is bigger than 40 but less than 60 
`);
else print(`a is smaller than 60 `);end if;

a := 50

a is bigger than 40 but less than 60 

We can apply these ideas to get Maple to search for the solutions of an equation.
For example,consider Pell's equation , named (probably incorrectly) after the English mathematician
John Pell (1611 to 1685) but in fact studied by the Indian mathematician Brahmagupta (598 to 660) 
much earlier. 

It asks for an integer solution ( a, b) to the equation a
2
K n b

2
= 1  where n is a fixed integer.

We'll look for solutions  a, b for small(ish) values of a and b.
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n:=5;
for a from 1 to 1000 do
for b from 1 to 1000 do
if a^2-n*b^2=1 then print(a,b); end if;
end do;end do:

n := 5

9, 4

161, 72

Lists

A list in Maple is an ordered set and is written with [ ].

It is often convenient to put results of calculations into such a list. The nth element of a list L (say) 
can then be referred to later by L[n]. The last element of L is L[-1], etc.
You can treat the elements of a list as variables and assign to them.

A:=[1,2,3,4,5];
A[3];
A[-2];
A[2..-1];
A[2]:=55;
A;

A := 1, 2, 3, 4, 5

3

4

2, 3, 4, 5

A
2

:= 55

1, 55, 3, 4, 5

You can't assign to an element that isn't there!

A[6]:=22;
Error, out of bound assignment to a list

The elements of a list are op(A) which stands for the operands of A.

To add extra elements:

L:=[];
for i from 1 to 100 do L:=[op(L),i^2];end do:
L;

L :=

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441,

484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369,

1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601,
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2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225,

4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241,

6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649,

8836, 9025, 9216, 9409, 9604, 9801, 10000

The number of elements in a list is nops ( = number of operands).

nops(L);
100

You can delete elements from a list (or replace then) using subsop (= substitute operand).
 Note that the original list is unchanged.

L0:=[1,2,3,4,5];
L1:=subsop(-1=NULL,1=NULL,L0);
L2=subsop(1=55,L0);
L0;

L0 := 1, 2, 3, 4, 5

L1 := 2, 3, 4

L2 = 55, 2, 3, 4, 5

1, 2, 3, 4, 5

As above one can use a for loop to put elements into a list. We could have done the same thing using
the seq function:

M:=[seq(n^2,n=1..100)];
M := 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400,

441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296,

1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500,

2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096,

4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084,

6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464,

8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000

restart;
You can use $ instead of the seq function (but the variable you use must be unassigned this time).

S:=0 $ 5;
T:=n^2 $ n=1..10;

S := 0, 0, 0, 0, 0

T := 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

The elements of a list do not need to be all the same kind and they can even be other lists:

N:=[x^2,[1,2],[]];
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N := x
2
, 1, 2 ,

You can sort lists:

sort([1,6,-4,10,5,7]);
K4, 1, 5, 6, 7, 10

You can do quite useful things with lists. For example, here are all the primes < 1000. The function
isprime returns either true or false.

L:=[]:
for i from 1 to 1000 do if isprime(i) then L:=[op(L),i];end 
if;end do:
L;

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,

191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,

281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,

389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487,

491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601,

607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,

719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827,

829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947,

953, 967, 971, 977, 983, 991, 997

There are 168 of them!

nops(L);
168

Sets

Maple can also deal with sets, which it puts in { }. The elements are not in any particular order, and 
if an element is "repeated" it will be left out.

S:={5,3,6,8};
T:={1,2,2,3};

S := 3, 5, 6, 8

T := 1, 2, 3

You can add an element to a set using union:

S:=S union {13};
S := 3, 5, 6, 8, 13

You can use other set-theoretic connectives.
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{1,2,3,4} intersect {3,4,5,6};
{1,2,3,4} minus {3,4,5,6};

3, 4

1, 2

We can get Maple to loop over only certain specified values. We may list these values either as a 
list:

for i in [2,8,5,3] do
x:=i;
print(`the value of x is `,x);
end do:

the value of x is , 2

the value of x is , 8

the value of x is , 5

the value of x is , 3

or as a set.  If Maple uses a set it will usually put it into order before implementing the commands 
(but don't count on it).

for i in {2,8,5,3} do
x:=i;
print(`the value of x is `,x);
end do:

the value of x is , 2

the value of x is , 3

the value of x is , 5

the value of x is , 8

You can find out more with the Help command: ?list

Summing

Earlier we used a for loop to sum the terms of Arithmetic and Geometric Progressions.

The process of summing the terms of a sequence is so common that Maple has a special function 
that lets you do it without writing your own loop.
You enter sum(expression, n = a .. b) and Maple will take the sum over the range from a to b.

What you sum over had better be an unassigned variable, or there will be trouble.

sum(n^2,n=1..100);
338350

In fact Maple is clever enough (sometimes) to even work out the general formula for a sum — and 
can (sometimes) sum all the way to infinity.

restart;
sum(a*r^i,i=1..n);
sum(a*r^i,i=1..infinity);
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sum(sin(i),i=1..n);

a r
nC 1

rK 1
K

a r

rK 1

K
a r

rK 1

1

2
 

sin 1  cos nC 1

cos 1 K 1
K

1

2
 sin nC 1 K

1

2
 

sin 1  cos 1

cos 1 K 1
C

1

2
 sin 1

It knows the answer to the "Basel" problem that Leonhard Euler (1707 to 1783) solved:

sum(1/i^2,i=1..infinity);
1

6
 !

2

In the next case it gives the answer in the form of the Riemann zeta function.

sum(1/i^3,i=1..infinity);
" 3

Sometimes it can't do it.

sum(cos(sqrt(n)*Pi),n=1..N);
sum(cos(sqrt(n)*Pi),n=1..10);
evalf(%);

>
n = 1

N

cos n  !

K1C cos 2  ! C cos ! 3 C cos 5  ! C cos 6  ! C cos 7  !

C cos 8  ! C cos 10  !

K1.877848844

Maple knows what happens if "something goes wrong"

sum(i*(-1)^i,i=1..100);
sum(i*(-1)^i,i=1..infinity);

50

>
i = 1

N

i K1
i

As with Diff and Int using a capital letter just prints the formula:

Sum(i*(-1)^i,i=1..100);

>
i = 1

100

i K1
i

evalf(%);
50.
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Procedures

We saw earlier how to define a function using an assignment like:  f :=  x -> x^2; This is in fact 
shorthand for using a construction known as a procedure. We can get the same effect with:

f:=proc(x) x^2; end proc;
f(20);

f := proc x x^2 end proc

400

Procedures can act like functions and return a value (like x
2
 in the above example) but can 

implement functions which are more complicated than just evaluating a formula. 
For example, we can adapt the code we wrote above to define a procedure which returns the number
of terms of a Geometric Progression needs for its sum to go past some given value n.
Note that variables which are only needed inside the procedure get declared to be local , so that if the
same variable names had been used somewhere else, these will not be changed by the procedure.

howmanyterms:=proc(x)
local term,total,count;
term:=a:total:=0:
count:=0:
while total<x do
total:=total+term;
term:=term*r;
count:=count+1;
end do:
count;
end proc;

howmanyterms := proc x

local term, total, count;

term := a;

total := 0;

count := 0;

while total ! x do total := total C term; term := term* r; count := 1C count end do;

count

end proc

The value returned  by the procedure is the last thing in the listing before the end statement. 
If we had wished we could have put return count; as the last thing in the "body of the procedure". 

Notice that Maple will pretty-print the procedure, indenting the code to indicate where the procedure
or loops start and finish.
To call the procedure, we tell Maple what the values of a and r are and then apply the procedure to a 
number.

a:=3;r:=2;
howmanyterms(10000);

a := 3
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r := 2

12

We can use an if-clause to define a function.

f:=proc(x) if x < 0 then x^2; else x+1; end if;end proc;
f(-1);
f(3);

f := proc x if x ! 0 then x^2 else xC 1 end if end proc

1

4

We can plot this function, but it is necessary to be a bit careful plotting functions defined by 
procedures, otherwise Maple gets unhappy.
You can either plot them without mentioning the variables at all, by: plot( f , -1 . . 1 ); or you can do 
it by putting in some single quotes: '  ':  plot('f(x)', x = -1..1);

 If the variable x had been assigned to you would have to put that in quotes too.

plot(f,-1..1);

K1 K0.5 0 0.5 1

0.5

1

1.5

2

We count the primes up to a real number n. When we plot this we get a kind of "step function".

countprimes:=proc(n)
local count,i;
count:=0;
for i from 1 to n do
if isprime(i) then count:=count+1;end if;
end do;
return count;
end proc;

countprimes := proc n

local count, i;

count := 0;

for i to n do if isprime i then count := countC 1 end if end do;

return count

end proc
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plot(countprimes,1..100);
plot(countprimes,1..1000);
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0
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15

20

25

100 200 300 400 500 600 700 800 900 1000
0

60

100

160

There is a "flat bit" near 890. In fact a sequence of 19 consecutive non-primes from 888 to 906.

plot(countprimes,880..910);

880 890 900 910

151

152

153

154

155

The French mathematician Adrien-Marie Legendre (1752 to 1833) approximated the growth of the 
number of primes with the function:

L:=x/(log(x)-1.08);

L :=
x

ln x K 1.08



43

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

plot(['countprimes(x)',L],x=0..100,0..25,colour=[black,red]);

x
0 20 40 60 80 100

0

5

10

15

20

25

The German mathematician Carl Friedrich Gauss (1777 to 1855) used a different approximation: 
the logarithmic integral:

logint:=proc(x) return int(1/log(t),t=2..x); end proc;

logint := proc x return int 1 / log t , t = 2 ..x end proc

plot([countprimes,logint],1..100,colour=[black,red]);

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

You can see these different approximations together(we'll specify the colours since otherwise Maple
will use colours which do not print well):

plot(['countprimes(x)',L,'logint(x)'],x=0..100,0..25,colour=
[black,red,blue]);
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More Procedures

If you want to make a procedure do something to a variable you have already defined outside the 
procedure, you have to declare it as global. 
We'll add an element to the end of a list. In this case we don't want to return anything so we put
return; and nothing else at the end of the procedure.

addon:=proc(x) 
global A;
A:=[op(A),x];
return;
end proc;

addon := proc x global A; A := op A , x ; return end proc

Then apply this:

A:=[1,2,3];
addon(0);
A;

A := 1, 2, 3

1, 2, 3, 0

We could do something similar without using a global variable. But notice that in this case the 
original list is unchanged.

addend:=proc(A,x) 
return [op(A),x];
end proc;

addend := proc A, x return op A , x end proc

A:=[1,2,3];
B:=addend(A,0);
A;

A := 1, 2, 3
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B := 1, 2, 3, 0

1, 2, 3

One thing to be careful of is that you cannot assign to the parameters passed to the procedure as if 
they were local variables.

test:=proc(n) n:=n+1; return n end proc;
test := proc n n := nC 1; return n end proc

test(9);
Error, (in test) illegal use of a formal parameter

Reversing

As an example of the use of procedures we'll use Maple to find a solution to the following problem:

Find a four digit number which is multiplied by 4 when its digits are reversed.

We start by defining a procedure which turns the digits of a number into a list.

Note that we test each procedure as we write it.

digits:=proc(n)
local ans,m,d;
m:=n;ans:=[];
while m<>0 do 
d:=m mod 10;m:=(m-d)/10;ans:=[d,op(ans)];
end do;
return ans;
end proc;

digits := proc n

local ans, m, d;

m := n;

ans := ;

while m!O0 do

d := mod m, 10 ; m := 1 / 10 * m K 1 / 10 * d; ans := d, op ans

end do;

return ans

end proc

K:=digits(12345008);
K := 1, 2, 3, 4, 5, 0, 0, 8

It's easy to write a list in the opposite order:

reverselist:=proc(L)
local i,M;
M:=[];
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for i from 1 to nops(L) do
M:=[L[i],op(M)];
end do;
return M;
end proc;

reverselist := proc L

local i, M;

M := ; for i to nops L do M := L i , op M end do; return M

end proc

reverselist(K);
8, 0, 0, 5, 4, 3, 2, 1

Now we have to get a number back from its list of digits

buildit:=proc(L)
local ans,i;
ans:=0;
for i from 1 to nops(L) do
ans:=10*ans+L[i];
end do;
return ans;
end proc;

buildit := proc L

local ans, i;

ans := 0; for i to nops L do ans := 10 * ansCL i end do; return ans

end proc

buildit(K);
12345008

Put the ingredients together:

reversenum:=proc(n) 
buildit(reverselist(digits(n)));
end proc;

reversenum := proc n buildit reverselist digits n end proc

reversenum(78531);
13587

Now we can look for our four digit number

for n from 1000 to 9999 do
if reversenum(n)=4*n then print(n); end if
end do:

2178

Do the same for a 5 digit number

for n from 20000 to 25000 do
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if reversenum(n)=4*n then print(n); end if
end do:

21978

and even for a 6 digit number

for n from 200000 to 250000 do
if reversenum(n)=4*n then print(n); end if
end do:

219978

So it looks as if we might have a theorem!

219999978*4;
879999912

An old question asks if one can always make a number "palindromic" by adding it to its reverse

n:=1790;
count:=0:
while reversenum(n)<>n do 
n:=n+reversenum(n); 
print(n);
count:=count+1;
end do:
print(`Palindromic in `,count,` steps`);

n := 1790

2761

4433

7777

Palindromic in , 3,  steps

Numbers to try are 89 or 296 or ... . A number NOT to try is 196

n:=196;
count:=0:
while reversenum(n)<>n do 
n:=n+reversenum(n); 
print(n);
count:=count+1;
end do:
print(`Palindromic in `,count,` steps`);

n := 196

887

1675

7436

13783

52514

Warning,  computation interrupted
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Pythagorean triples

We can use Maple to search for solutions to equations with integer solutions. Such equations are 
called Diophantine after the Greek mathematician Diophantus of Alexandria  (200 to 284 AD). 

For example, looking for Pythagorean triples satisfying a
2
C b

2
= c

2
 we can use the Maple function

type(x, integer) to check whether a number has an integer square root. We take y # x since otherwise 
we will get each pair ( x, y) twice.
 

for x from 1 to 20 do
  for y from x to 20 do
   if type(sqrt(x^2+y^2),integer) then
     print(x,y,sqrt(x^2+y^2))
   fi;
  od
od:

3, 4, 5

5, 12, 13

6, 8, 10

8, 15, 17

9, 12, 15

12, 16, 20

15, 20, 25

Here are all solutions up to x = 100 and y = 100. 
We'll leave out those which are multiples of others we have found.
We do this by insisting that x and y have no factor bigger than 1 in common.
We arrange this using the igcd (= integer greatest common divisor  or highest common factor) 
function. 
Notice how we combine the two conditions with an and. 

L:=[]:
for x from 1 to 100 do
  for y from x to 100 do
    if type(sqrt(x^2+y^2),integer) and igcd(x,y) = 1 then
      L:=[op(L),[x,y,sqrt(x^2+y^2)]];
    fi;
  od:
od:
L;

3, 4, 5 , 5, 12, 13 , 7, 24, 25 , 8, 15, 17 , 9, 40, 41 , 11, 60, 61 , 12, 35, 37 , 13,

84, 85 , 16, 63, 65 , 20, 21, 29 , 20, 99, 101 , 28, 45, 53 , 33, 56, 65 , 36, 77,

85 , 39, 80, 89 , 48, 55, 73 , 60, 91, 109 , 65, 72, 97

Some other equations

Similarly, we can look for non-zero solutions of other equations like a
2
C 2 b

2
= c

2
  or  

2 a
2
C 3 b

2
= c

2
  or ...   Sometimes we don't find any and then we could try and prove 

mathematically that no such solution exists!
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for a from 1 to 100 do
for b from 1 to 100 do
c:=sqrt(2*a^2+3*b^2);
if type(c,integer) then print(a,b,c); end if;
end do
end do:

Work modulo 3  to see that one can't find solutions to this last one!

We can now look again at Pell's equation , and solve it more efficiently than we did before. 

We look for a solution (x, y) to the equation n x
2
C 1 = y

2
 where n is a fixed integer.

n:=2:
for x from 0 to 2000 do
y:=sqrt(n*x^2+1);
if type(y,integer) then print(x,y); end if;
end do:

0, 1

2, 3

12, 17

70, 99

408, 577

Can you see what recurrence relation is satisfied by the solution? If you could you could generate 
lots more solutions.

n:=5:
for x from 0 to 2000 do
y:=sqrt(n*x^2+1);
if type(y,integer) then print(x,y); end if;
end do:

0, 1

4, 9

72, 161

1292, 2889

It's harder to spot the relation this time. Though if you take the clue from the last one you might 
manage it! The next pair is: (23184, 51841)

51841^2-5*23184^2;
1

The Indian mathematician Brahmagupta solved the equation in 628AD with n = 83 and found 
solutions:
(9, 82), (1476, 13447), (242055, 2205226), (39695544, 361643617), (6509827161, 59307347962), 
(1067571958860, 9726043422151), (175075291425879, 1595011813884802) 

Interpolation

A parabola has an equation y = a x
2
C b xC c with three coefficients we can choose. So in general 

one can find a (unique!) parabola through any three points in the plane.
We'll call the points p, q, r and each point will be a list of length 2.
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restart;
parab:=proc(p,q,r)
local par,a,b,c,eqn1,eqn2,eqn3,s;
par:=a*x^2+b*x+c;
eqn1:=subs(x=p[1],p[2]=par);
eqn2:=subs(x=q[1],q[2]=par);
eqn3:=subs(x=r[1],r[2]=par);
s:=solve({eqn1,eqn2,eqn3},{a,b,c});
subs(s,par);
end proc;

parab := proc p, q, r

local par, a, b, c, eqn1, eqn2, eqn3, s;

par := a * x^2C b * xC c;

eqn1 := subs x = p 1 , p 2 = par ;

eqn2 := subs x = q 1 , q 2 = par ;

eqn3 := subs x = r 1 , r 2 = par ;

s := solve eqn1, eqn2, eqn3 , a, b, c ;

subs s, par

end proc

parab([-1,-4],[2,-1],[1,3]);

K
5

2
 x

2
C

7

2
 xC 2

We'll now plot the parabola and some points. We do this by assigning our plots (things Maple calls 
"Plot structures" to variables P and Q and then using the display function from the plots package. 
Note how we plot the individual points. You can use ?plot[options] to see what all the other things 
you can specify are.

points:=[-1,-1],[2,-2],[1,2];
P:=plot(parab(points),x=-2..3,-3..3):
Q:=plot({points},style=point,symbol=cross,symbolsize=20,
colour=blue):
plots[display]([P,Q]);

points := K1, K1 , 2, K2 , 1, 2

x

K2 K1 1 2 3

K3

K2

K1

1

2

3
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More plotting

You can use a similar method to animate the drawing of (for example) curves.
Put all the curves (one "frame" at a time) into a list and then give it to plots[display]. If you want to 
see the result with the frames in sequence put in insequence=true otherwise you'll get them all on top
of one another. Then click on the window and choose Play from the Animation window or click on 
the Play icon on the tool bar.

The only problem with this is that it can produce very large files.
restart;
L:=[]:
for k from 0 to 10 by 0.2 do
L:=[op(L),plot(cos(k*sin(x)),x=0..Pi,-1..1)];
end do:
plots[display](L,insequence=true);

x
1 2 3

K1

K0.5

0

0.5

1

In polar coordinates:

L:=[]:
for k from 0.1 to 10 by 0.1 do
L:=[op(L),plot([(t/5),t,t=0..k*Pi],coords=polar,thickness=2)]
;
end do:
plots[display](L,insequence=true);

K3 K2 K1 0 1 2

K2

K1

1

2

L:=[]:
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for k from 0 to 20 by 0.5 do
L:=[op(L),plot([sin(k*cos(t)),t,t=0..2*Pi],coords=polar)];
end do:
plots[display](L,insequence=true);

K0.8 K0.6 K0.4 K0.2 0 0.2 0.4 0.6

K1

K0.5

0.5

1

You can also animate 3-dimensional pictures in a similar way. If you do a lot of this, there are 
commands plots[animate] and plots[animate3d] which you can learn about.

L:=[]:
for k from -1 to 1 by 0.01 do
L:=[op(L),plot3d(k*(x^2+y^2),x=-1..1,y=-1..1,view=-1..1)];
end do:
plots[display](L,insequence=true);

L:=[]:
for k from 0 to 3 by 0.1 do
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L:=[op(L),plot3d([sin(p)*cos(q),sin(p)*sin(q),p^k],p=0..Pi,q=
0..2*Pi)];
end do:
plots[display](L,insequence=true);

Recursion
restart;

Maple will let procedures call themselves. This is called recursion. Of course they can't carry on 
doing this indefinitely, so things have always got to be arranged so that the process terminates.

One of the best known illustrations is the process by which the Fibonnaci numbers:
         1, 1, 2, 3, 5, 8, 13, 21, ...
are calculated. These were introduced by Fibonacci of Pisa (1170 to 1250) who was the person who 
introduced the Arabic (or Indian) numeral system to Europe. He introduced them in a problem 
involving rabbit breeding, but in fact they were known by the Indian mathematician Hemchandra 
more than 50 years earlier (and other Indians had considered them even before that). 

fib:=proc(n) if n<3 then 1;else fib(n-1)+fib(n-2);end if;end 
proc;

fib := proc n if n ! 3 then 1 else fib n K 1 C fib n K 2 end if end proc

fib(35);

9227465



54

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

Unfortunately the process by which this works is "exponential" in n and so it is not a very practical 
algorithm.
We can see how the time increases by modifying our program.

fib:=proc(n) 
global count;
count:=count+1;
if n<3 then 1;else fib(n-1)+fib(n-2);end if;
end proc;

fib := proc n

global count;

count := countC 1; if n ! 3 then 1 else fib n K 1 C fib n K 2 end if

end proc

count:=0:start:=time():
fib(30);
print(count,` calls `,time()-start,` secs`);

832040

1664079,  calls , 5.698,  secs

count:=0:start:=time():
fib(35);
print(count,` calls `,time()-start,` secs`);

9227465

0,  calls , 15.374,  secs

To get round this, Maple has a device: option remember; which stores the result of any calculation 
so it doesn't have to do it again. This makes the calculation linear in n.

fib0:=proc(n)
option remember; 
global count;
count:=count+1;
if n<3 then 1;else fib0(n-1)+fib0(n-2);end if;
end proc;

fib0 := proc n

option remember;

global count;

count := countC 1; if n ! 3 then 1 else fib0 n K 1 C fib0 n K 2 end if

end proc

count:=0:start:=time():
fib0(300);
print(count,` calls `,time()-start,` secs`);

222232244629420445529739893461909967206666939096499764990979600

300,  calls , 0.003,  secs
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We can apply a similar process to calculating the elements of Pascal's triangle.

bc:=proc(n,r) 
if r>n then 0; elif r=0 then 1 else bc(n-1,r-1)+bc(n-1,r);end
if;
end proc;

bc := proc n, r

if n ! r then 0 elif r = 0 then 1 else bc n K 1, r K 1 C bc n K 1, r end if

end proc

Unfortunately this too soon gets out of control!

bc(30,13);
Warning,  computation interrupted

To see why:

bc:=proc(n,r)
global count;
count:=count+1; 
if r>n then 0; elif r=0 then 1 else bc(n-1,r-1)+bc(n-1,r);end
if;
end proc;

bc := proc n, r

global count;

count := countC 1;

if n ! r then 0 elif r = 0 then 1 else bc n K 1, r K 1 C bc n K 1, r end if

end proc

count:=0:start:=time():
bc(20,10);
print(count,` calls `,time()-start,` secs`);

184756

705431,  calls , 3.057,  secs

count:=0:start:=time():
bc(25,10);
print(count,` calls `,time()-start,` secs`);

3268760

10623469,  calls , 15.469,  secs

Again option remember;  gets us out of the hole!

bc0:=proc(n,r)
option remember; 
global count;
count:=count+1; 
if r>n then 0; elif r=0 then 1 else bc0(n-1,r-1)+bc0(n-1,r);
end if;
end proc;
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bc0 := proc n, r

option remember;

global count;

count := countC 1;

if n ! r then 0 elif r = 0 then 1 else bc0 n K 1, r K 1 C bc0 n K 1, r end if

end proc

count:=0:start:=time():
bc0(20,10);
print(count,` calls `,time()-start,` secs`);

184756

131,  calls , 0.001,  secs

More recursion

The highest common factor  or greatest common divisor  can be defined very economically using a 
recursive procedure. This already exists as a standard Maple function igcd.

hcf:=proc(a,b) if b mod a =0 then a else hcf(b mod a,a);end 
if;end proc;

hcf := proc a, b if mod b, a = 0 then a else hcf mod b, a , a end if end proc

hcf(12345,7896);
igcd(12345,7896);

3

3

One can also implement the Euclidean algorithm  which writes the hcf as a combination of the 
original numbers.
You can get this as a standard Maple function as igcdex (= extended integer gcd ).

euclid:=proc(a,b)
local t;
if b mod a=0 then return a,1,0;
else t:=euclid(b mod a,a);
return t[1],t[3]-t[2]*(trunc(b/a)),t[2];
end if;
end proc;

euclid := proc a, b

local t;

if mod b, a = 0 then

return a, 1, 0

else

t := euclid mod b, a , a ; return t 1 , t 3  K t 2 * trunc b / a , t 2



57

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

end if

end proc

euclid(12345,7896);
3, K197, 308

igcdex(12345,7896,'s','t');s;t;
3

K197

308

Looking for prime numbers

Recall that a prime number is an integer which is not exactly divisible by any smaller integer except 
±1.
Maple tests for primeness using the function isprime which returns the answer True or False.

For example, we may look for the next prime after (say) 1234567
(Actually, Maple has a function nextprime which would do this for us, but let's not spoil the fun.)

a:=1234567;
while not isprime(a) do a:=a+1;end do:
a;

a := 1234567

1234577

We may count the number of primes in any given range. The German mathematician Gauss (1777 – 
1855) was interested in how the primes were distributed and when he had any free time, he would 
spent 15 minutes calculating the primes in a "chiliad" ( a range of a 1000 numbers). By the end of 
his life, it is reckoned that he had counted all the primes up to about two million.

countprimes:=proc(n)
option remember;
local count,i;
count:=0:
for i from n*1000+1 to n*1000+1000 by 2 do
if isprime(i) then count:=count+1;fi;
end do:
count;
end proc;

countprimes := proc n

option remember;

local count, i;

count := 0;

for i from 1000 * nC 1 by 2 to 1000 * nC 1000 do

if isprime i then count := countC 1 end if

end do;
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count

end proc

plot('countprimes(round(x))',x=0..100);

x
0 20 40 60 80 100

80

90

100

110

120

130

140

150

160

There are some other interesting places to look for primes. The mathematician Leonhard Euler ( 

1707– 1783) discovered that the  formula x
2
K xC 41 is particularly prime-rich. In fact it produces 

primes for every integer from 1 to 40 (but not, of course, for x = 41) and for lots of others as well. 
howmanyprimes:=proc(n)
local count,x;
count:=0:
for x from 1 to n do
if isprime(x^2-x+41) then count:=count+1;end if;
end do:
count;
end proc;

howmanyprimes(40);
howmanyprimes(400);

howmanyprimes := proc n

local count, x;

count := 0;

for x to n do if isprime x^2 K xC 41 then count := countC 1 end if end do;

count

end proc

40

270
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For many years mathematicians have tried to find big primes. The French mathematician Fermat 

(1601 – 1665) best known for his so-called Last Theorem, investigated primes in the sequence  2
n
 + 

1.

for n from 1 to 50 do if isprime(2^n+1) then print(n,2^n+1);
end if;end do:

1, 3

2, 5

4, 17

8, 257

16, 65537

You should note that the values of n which give primes are all of the form 2
m
, but that n = 32 does 

not give a prime. 

Euler was the first to show (150 years after Fermat guessed that 2
32

 + 1 would be prime) that it is 
composite.
You can use the Maple function ifactor (= integer factorise) to verify this.

(In fact nobody knows if the formula 2
2m

 +1 produces any other primes after m = 4, though a lot of 
effort has gone into looking for them.)

a:=2^32+1; ifactor(a);
a := 4294967297

641  6700417

One of Fermat's correspondents was the mathematician Mersenne (1588 – 1648). He too 

investigated primes and looked at numbers of the form 2
n
 – 1.

for n from 1 to 150 do
m:=2^n-1;
if isprime(m) then print(n,m);end if;
end do:

2, 3

3, 7

5, 31

7, 127

13, 8191

17, 131071

19, 524287

31, 2147483647

61, 2305843009213693951

89, 618970019642690137449562111
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107, 162259276829213363391578010288127

127, 170141183460469231731687303715884105727

In fact it is fairly easy to show that if n is not prime the neither is 2
n
 – 1. For example, 2

35
 – 1 is 

divisible by 2
5
 – 1 and by 2

7
 – 1.

(2^35-1)/(2^5-1);(2^35-1)/(2^7-1);
1108378657

270549121

Prime numbers of the form 2
n
K 1 are called Mersenne primes and they are almost always the 

largest primes known. This is because a French mathematician called Lucas (1842 – 1891) invented 

a test for such primes using the Fibonacci numbers. In 1876 he proved that the number 2
127

K 1 (see
above) is prime. This was the largest known prime until people started using computers in the 

1950's. At present 46 Mersenne primes are known. The most recent is 2
37156667

K 1 and was 
discovered on 6th September 2008 using GIMPS (the Great InterNet Mersenne Prime Search). The 
largest (and largest known prime) was the 45th to be discovered and was found on August 23rd 

2008 and is 2
43112609

K 1.

With a bit of effort, we can show that it has 12 978 189  decimal digits (and won a prize of $100 000
for being the first one found with more than 10 million digits).

evalf(43112609*log[10](2));

1.297818850 10
7

This is (well) outside the range of Maple, but you can test the next after those listed above.

isprime(2^521-1);
true

Testing for primes

The Maple function isprime uses an indirect method for deciding whether or not a number is
probably prime.
It is based on a Number Theory result called Fermats Little Theorem:

           If p is prime then for any a we have a
p
 = a modulo p.

In particular, if one can find a number a for which the above does not hold, then p is not prime.

If the above holds with a = 2, 3, 7  then we'll call p a probprime.

Note that to run a test like this we need to be able to work out high powers efficiently. Maple has 
some tricks for doing this.

First: how not to do it: 

To calculate (say) 2
3456789

 modulo 3456789 you can get Maple to calculate this (very) big number 
and then reduce it modulo 3456789.

p:=3456789;
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n:=2^p:
n mod p;

p := 3456789

2288630

Much more efficiently, it can reduce modulo p as it goes along and never have to handle integers 
bigger than p. To do this use &  ̂instead of .̂

p:=3456789;
2&^p mod p;

p := 3456789

2288630

So we'll test a prime candidate with some a:

testa:=proc(n,a) a&^n mod n=a;end proc;

testa := proc n, a mod a &^ n, n = a end proc

testa(1234577,2);
2 = 2

probprime:=proc(n) testa(n,2) and testa(n,3) and testa(n,5) 
and testa(n,7); end proc;

probprime := proc n

testa n, 2 and testa n, 3 and testa n, 5 and testa n, 7

end proc

probprime(1234577);
true

Let's see how good out test is by comparing it with the isprime function in Maple..

for n from 3 to 2000 by 2 do
if probprime(n) and not isprime(n) then print(n); end if;
end do:

561

1105

1729

In fact, the above numbers will pass testa for any value of a. They are called Carmichael numbers or
pseudoprimes. The isprime test in Maple uses a (slightly) more sophisticated test. It is not known to 
produce any incorrect answers!

The Linear Algebra package
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A lot of clever stuff has been written for Maple and has been put into Packages.
To see what packages are available type in ?index,package. 

restart;

The LinearAlgebra package lets you work with Matrices (and Vectors). 
Note that all the commands in this package have capital letters.

with(LinearAlgebra);
&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm,

BilinearForm, CharacteristicMatrix, CharacteristicPolynomial , Column,

ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix,

ConditionNumber, ConstantMatrix, ConstantVector , Copy, CreatePermutation ,

CrossProduct, DeleteColumn , DeleteRow , Determinant, Diagonal, DiagonalMatrix,

Dimension, Dimensions, DotProduct, EigenConditionNumbers , Eigenvalues ,

Eigenvectors , Equal, ForwardSubstitute, FrobeniusForm, GaussianElimination ,

GenerateEquations , GenerateMatrix, GetResultDataType, GetResultShape,

GivensRotationMatrix , GramSchmidt, HankelMatrix, HermiteForm,

HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix,

IdentityMatrix , IntersectionBasis , IsDefinite, IsOrthogonal, IsSimilar, IsUnitary,

JordanBlockMatrix, JordanForm, LA_Main, LUDecomposition, LeastSquares,

LinearSolve, Map, Map2, MatrixAdd, MatrixExponential , MatrixFunction ,

MatrixInverse, MatrixMatrixMultiply , MatrixNorm, MatrixPower,

MatrixScalarMultiply , MatrixVectorMultiply , MinimalPolynomial, Minor, Modular,

Multiply, NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent,

Pivot, PopovForm, QRDecomposition, RandomMatrix, RandomVector, Rank,

RationalCanonicalForm , ReducedRowEchelonForm , Row, RowDimension,

RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector , SchurForm,

SingularValues, SmithForm, SubMatrix, SubVector, SumBasis, SylvesterMatrix,

ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector , VandermondeMatrix,

VectorAdd , VectorAngle, VectorMatrixMultiply , VectorNorm, VectorScalarMultiply ,

ZeroMatrix, ZeroVector, Zip

The above lets you use all the functions it lists. If you don't want to see this list, put  : instead of  ; 
when you enter with ( ... ).

If you ever use restart; you will have to read the package in again.
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A matrix is a "box of numbers". There are several ways to enter matrices. You tell Maple the 
number of rows and columns (or just how many rows if you want a square one). (In fact you don't 
need to read the package for this bit.)

The second parameter is a list of lists. Maple will put in 0 if you don't tell it what the entry is.

A:=Matrix(2,[[a,b],[c,d]]);
B:=Matrix(2,3,[[a,b,c],[d,e,f]]);
C:=Matrix(3,2,[[a,b],[c]]);
Z:=Matrix(2,1);

A :=
a b

c d

B :=
a b c

d e f

C :=

a b

c 0

0 0

Z :=
0

0

You can enter a matrix by rows: written < a | b | c > or by columns: < a , b , c > and then rows of 
columns or columns of rows.

There is something called the matrix palette on the View menu which can help,

A:=<<a|b|c>,<d|e|f>,<g|h|i>>;
B:=<<a,b,c>|<d,e,f>|<g,h,i>>;

A :=

a b c

d e f

g h i

B :=

a d g

b e h

c f i

You can initialise the entries of a matrix using a double for-loop or you can use the following:

M := Matrix(3,5,(i,j) -> i+2*j);

M :=

3 5 7 9 11

4 6 8 10 12

5 7 9 11 13
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You can even get a matrix with "unassigned variables" for all the entries.

M := Matrix(3,(i, j) -> m[i,j]);

M :=

m
1, 1

m
1, 2

m
1, 3

m
2, 1

m
2, 2

m
2, 3

m
3, 1

m
3, 2

m
3, 3

You can add or subtract matrices of the same size and can multiply them by a number (or a variable)
using *.

A:=<<a|b>,<c|d>>;
B:=<<e|f>,<g|h>>;
C:=<<p|q>,<r|s>>;
A+B;
A-B;
3*C;

A :=
a b

c d

B :=
e f

g h

C :=
p q

r s

aC e bC f

cC g dC h

aK e bK f

cK g dK h

3 p 3 q

3 r 3 s

You can multiply together matrices of compatible shapes by A.B; and you can take powers of 
matrices by (for example) A^3; or A^(-1); (giving the inverse of the matrix).

A.B;A^3;A^(-1);

a eC b g a fC b h

c eC d g c fC d h

a
2
C b c  aC a bC b d  c a

2
C b c  bC a bC b d  d

c aC d c  aC b cC d
2

 c c aC d c  bC b cC d
2

 d
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d

a dK b c
K

b

a dK b c

K
c

a dK b c

a

a dK b c

Multiplication of square matrices is associative: A.(B.C) = (A.B).C and distributive A.(B + C) = A.B +
A.C but not (in general) commutative A.B $ B.A.

(A.B).C-A.(B.C);
a eC b g  pC a fC b h  rK a e pC f r K b g pC h r , a eC b g  qC a f

C b h  sK a e qC f s K b g qC h s , 

c eC d g  pC c fC d h  rK c e pC f r K d g pC h r , c eC d g  qC c f

C d h  sK c e qC f s K d g qC h s

simplify(%);

0 0

0 0

A.(B+C)-(A.B+A.C);
a eC p C b gC r K a eK b gK a pK b r, a fC q C b hC s K a fK b h

K a qK b s , 

c eC p C d gC r K c eK d gK c pK d r, c fC q C d hC s K c fK d h

K c qK d s

simplify(%);

0 0

0 0

A.B-B.A;

b gK c f a fC b hK e bK f d

c eC d gK g aK h c c fK b g

simplify(%);

b gK c f a fC b hK e bK f d

c eC d gK g aK h c c fK b g

Here are some useful matrices: RandomMatrix produces a matrix with entries in the range -99 .. 99.

IdentityMatrix(4); 
ZeroMatrix(2,3); 
RandomMatrix(3,2);
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0

0 0 0

K50 K79

30 K71

62 28

The determinant of a matrix is a combination of the entries of a square matrix (in rather a 
complicated way!) which has the property that it is 0 if the matrix does not have an inverse.

N:=<<a|b>,<c|d>>;
Determinant(N);

N :=
a b

c d

a dK b c

Determinant(M);
m

1, 1
 m

2, 2
 m

3, 3
Km

1, 1
 m

2, 3
 m

3, 2
Cm

2, 1
 m

3, 2
 m

1, 3
Km

2, 1
 m

1, 2
 m

3, 3
Cm

3, 1
 m

1, 2
 m

2, 3

Km
3, 1

 m
2, 2

 m
1, 3

We can use Maple to demonstrate a theorem discovered by the English mathematician Arthur 

Cayley and the Irish mathematician William Hamilton .

First we take a "general matrix".

n:=2;
A:=Matrix(n,(i,j)->a[i,j]);

n := 2

A :=

a
1, 1

a
1, 2

a
2, 1

a
2, 2

Id:=IdentityMatrix(n);

Id :=
1 0

0 1

Then we take the determinant of the matrix A - xI where x is an unassigned variable. This is a 
polynomial in x called the characteristic polynomial . 
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(The roots (possibly complex!) of this are the eigenvalues .)

Then the Cayley-Hamilton theorem  says that the matrix A satisfies its characteristic polynomial. That
is, if we substitute A for x in this polynomial, we get the zero matrix.

p:=Determinant(A-x*Id);

p := a
1, 1

 a
2, 2

K a
1, 1

 xK x a
2, 2

C x
2
K a

1, 2
 a

2, 1

p:=collect(p,x);

p := x
2
C Ka

1, 1
K a

2, 2
 xC a

1, 1
 a

2, 2
K a

1, 2
 a

2, 1

Unfortunately, Maple won't let you use the subs function with matrices so we do it the hard way.

Q:=sum(coeff(p,x,k)*A^k,k=0..n);

Q := a
1, 1

 a
2, 2

K a
1, 2

 a
2, 1

C Ka
1, 1

K a
2, 2

 

a
1, 1

a
1, 2

a
2, 1

a
2, 2

C

a
1, 1

a
1, 2

a
2, 1

a
2, 2

2

simplify(Q);

0 0

0 0

Changing n from 2 to a bigger number will make Maple do more work but the result still holds!

The Power method

As an example of how to use the LinearAlgebra package we'll look at a technique for calculating the
largest eigenvalue of a linear transformation.

We use the fact that if we apply the transformation over and over again to a vector the resulting 
vectors settle down to being in the same line and this is the direction of an eigenvector (associated 
with the largest eigenvalue). In fact this method works providing the largest (in absolute value) 
eigenvalue is real and distinct.

restart;
with(LinearAlgebra):
A:=Matrix(2,[[2,1],[3,-4]]);

A :=
2 1

3 K4

It doesn't matter what vector we start at.

V:=Vector([-2,1]);

V :=
K2

1
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We'll print the vector and also something that enables us to see its direction.

for n from 1 to 15 do
W:=(A^n).V;
print(W,evalf(W/Norm(W,2),5));
end do:

K3

K10
,

K0.28734

K0.95780

K16

31
,

K0.45865

0.88862

K1

K172
,

K0.0058138

K0.99997

K174

685
,

K0.24620

0.96924

337

K3262
,

0.10276

K0.99468

K2588

14059
,

K0.18104

0.98347

8883

K64000
,

0.13748

K0.99052

K46234

282649
,

K0.16143

0.98691

190181

K1269298
,

0.14818

K0.98899

K888936

5647735
,

K0.15548

0.98784

3869863

K25257748
,

0.15144

K0.98845

K17518022

112640581
,

K0.15368

0.98816

77604537

K503116390
,

0.15245

K0.98831
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K347907316

2245279171
,

K0.15313

0.98823

1549464539

K10024838632
,

0.15275

K0.98828

After a few steps the vectors are "settling down".
We can now calculate how the vectors are stretched each time: the eigenvalue :

evalf((A.W)[1]/W[1]);
K4.469872901

Maple will calculate the eigenvalues and associated eigenvectors.

E:=evalf(Eigenvectors(A));

E :=
2.464101616

K4.464101616
,

2.154700534 K0.1547005384

1. 1.

We've got quite close to the larger eigenvalue. To see how good our estimate of the eigenvector is:

ev:=Column(E[2],2);
ev/Norm(ev,2);

ev :=
K0.1547005384

1.

K0.152881949816236512

0.988244458599999986

So it wasn't bad.

We can do the same thing with more iterations (and a different starting vector!):

A:=Matrix(2,[[2,1],[3,-4]]);
V:=Vector([-2,0.9]);
W:=(A^100).V:
W/Norm(W,2);
evalf((A.W)[1]/W[1]);

A :=
2 1

3 K4

V :=
K2

0.9

K0.152881949784357928

0.988244458526477243

K4.464101615
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This process will only settle down if there is a real dominating eigenvalue.
For example:

A:=Matrix(2,[[1,3],[-3,1]]);
V:=Vector([-1,1]);
for n from 1 to 10 do
W:=(A^n).V;
print(W,evalf(W/Norm(W,2),5));
end do:

A :=
1 3

K3 1

V :=
K1

1

2

4
,

0.44722

0.89444

14

K2
,

0.98994

K0.14142

8

K44
,

0.17889

K0.98388

K124

K68
,

K0.87680

K0.48083

K328

304
,

K0.73344

0.67977

584

1288
,

0.41295

0.91074

4448

K464
,

0.99462

K0.10376

3056

K13808
,

0.21609

K0.97636

K38368

K22976
,

K0.85795

K0.51377

K107296

92128
,

K0.75869

0.65144
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It never settles down since the eigenvalues are complex:

E:=evalf(Eigenvectors(A));

E :=
1.C 3. I

1.K 3. I
,

K1. I 1. I

1. 1.

Using dsolve
restart;

We explore the dsolve Maple function.

First we define a differential equation. We can use a variety of notations. Note the form of the 
second derivative using the D notation.

We'll look at the equation of (say) a pendulum executing SHM with a damping term a.

deq:=diff(x(t),t$2)+a*diff(x(t),t)+x(t)=0;

deq :=
d

2

dt
2

 x t C a 
d

dt
 x t C x t = 0

deq:=D(D(x))(t)+a*D(x)(t)+x(t)=0;

deq := D
2

x t C a D x t C x t = 0

deq:=(D@@2)(x)(t)+a*D(x)(t)+x(t)=0;

deq := D
2

x t C a D x t C x t = 0

dsolve(deq,x(t));

x t = _C1 e
K

1

2
 aC

1

2
 a2K 4  t

C _C2 e
K

1

2
 aK

1

2
 a2K 4  t

This general solution contains "arbitrary constants". We can get rid of them by specifying boundary 
or initial conditions . To specify the derivative we must use the D notation.

s:=dsolve({deq,x(0)=p,D(x)(0)=q},x(t));

s := x t =
1

2
 

a pC a
2
K 4  pC 2 q  e

K
1

2
 aC

1

2
 a2K 4  t

a
2
K 4

K
1

2
 

2 qC a pK a
2
K 4  p  e

K
1

2
 aK

1

2
 a2K 4  t

a
2
K 4

We get different kinds of solution for a < 0 (negative damping), a = 0 (undamped), 0 < a < 2 (light 
damping), a = 2 (critical damping) and a > 2 (heavy damping). For example:
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CRITICAL DAMPING
(This is how a measuring instrument is damped so that the "needle" settles down to its final position 
as quickly as possible)

a:=2:
s:=dsolve({deq,x(0)=1,D(x)(0)=0},x(t));

s := x t = e
Kt
C e

Kt
 t

To plot this we first have to make Maple think that x(t) is this solution. We do this with the assign 
function.
(Note that if we want to use x afterwards we'll have to unassign it.)

assign(s);x(t);
plot(x(t),t=0..8,0..1);

e
Kt
C e

Kt
 t

t
0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

Now we can plot the above five different cases -- and even colour them differently (if we didn't want
a paper copy!).

A:=[-0.1,0,0.5,2,3]:
rb:=red,gold,green,blue,black:
L:=[]:
for r from 1 to 5 do
a:=A[r];
x:='x':
s:=dsolve({deq,x(0)=1,D(x)(0)=0},x(t));
assign(s);
p:=plot(x(t),t=0..20,-3..3,colour=rb[r]);
L:=[op(L),p];
end do:

plots[display](L);
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t

5 10 15 20

K3

K2

K1

0

1

2

3

DEtools

One can do the same thing using DEplot function from DEtools. This is a numerical method which 
works even if one could not find an analytic solution to the equation.

with(DEtools);
DEnormal, DEplot, DEplot3d, DEplot_polygon , DFactor, DFactorLCLM, DFactorsols,

Dchangevar, FunctionDecomposition , GCRD, LCLM, MeijerGsols, PDEchangecoords,

RiemannPsols, Xchange, Xcommutator, Xgauge, Zeilberger, abelsol, adjoint,

autonomous, bernoullisol, buildsol, buildsym, canoni, caseplot, casesplit, checkrank,

chinisol, clairautsol, constcoeffsols , convertAlg , convertsys, dalembertsol, dcoeffs,

de2diffop , dfieldplot, diff_table, diffop2de, dperiodic_sols, dpolyform, dsubs, eigenring,

endomorphism_charpoly, equinv, eta_k, eulersols, exactsol, expsols, exterior_power,

firint, firtest, formal_sol, gen_exp, generate_ic, genhomosol, gensys, hamilton_eqs,

hypergeomsols, hyperode, indicialeq , infgen, initialdata , integrate_sols, intfactor ,

invariants, kovacicsols , leftdivision , liesol, line_int, linearsol, matrixDE, matrix_riccati,

maxdimsystems, moser_reduce, muchange, mult, mutest, newton_polygon , normalG2,
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ode_int_y, ode_y1, odeadvisor, odepde, parametricsol, phaseportrait, poincare,

polysols, power_equivalent, ratsols, redode, reduceOrder, reduce_order, regular_parts,

regularsp, remove_RootOf, riccati_system , riccatisol, rifread, rifsimp, rightdivision ,

rtaylor, separablesol, singularities , solve_group, super_reduce, symgen,

symmetric_power, symmetric_product, symtest, transinv, translate, untranslate,

varparam, zoom

x:='x':
deq:=(D@@2)(x)(t)+0.5*D(x)(t)+x(t)=0;
DEplot(deq,x(t),t=0..10,[[x(0)=1,D(x)(0)=0]]);

deq := D
2

x t C 0.5 D x t C x t = 0

t

0 2 4 6 8 10

x(t)

K0.5

0.5

1

As usual there are lots of options that the Help will tell you about. Some even let you specify a 
sensible colour! Here is the same equation with different boundary conditions.

DEplot(deq,x(t),t=0..10,[[x(0)=0,D(x)(0)=1]],stepsize=0.1,
linecolour=red,thickness=1);

t

0 2 4 6 8 10

x(t)

K0.2

0.2

0.4

0.6



75

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

We can convert our equation to a system by putting the velocity D(x) = y and then we can plot the 
velocity against the displacement. This is called a phase plane plot. Maple will also show the 
direction of the "vector field" at every point.

sys:=[y(t)=D(x)(t),D(y)(t)+0.5*y(t)+x(t)=0];
sys := y t = D x t , D y t C 0.5 y t C x t = 0

DEplot(sys,[x(t),y(t)],t=0..20,[[x(0)=1,y(0)=0]],stepsize=
0.05,colour=red,linecolour=black,thickness=1);

x

K0.5 0 0.5 1

y

K0.6

K0.4

K0.2

0.2

If you give more than one set of boundary conditions  then Maple will do several curves.

DEplot(sys,[x(t),y(t)],t=0..20,[[x(0)=1,y(0)=0],[x(0)=2,y(0)=
0],[x(0)=3,y(0)=0]],stepsize=0.05,colour=grey,linecolour=
[black,red,blue],thickness=1);
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x
K1 0 1 2 3

y

K2

K1

1

If you don't give any boundary conditions you just get the vector-field and you have to specify 
ranges for x and y.

DEplot(sys,[x(t),y(t)],t=0..20,x=-5..5,y=-5..5,stepsize=0.05)
;

x

K4 K2 0 2 4

y

K4

K2

2

4

Other methods
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Maple can use a variety of methods to solve the equation, including series:

deq:=(D@@2)(x)(t)-0.5*D(x)(t)+x(t)=0;
s1:=dsolve({deq,x(0)=1,D(x)(0)=0},x(t),series);

deq := D
2

x t K 0.5 D x t C x t = 0

s1 := x t = 1K
1

2
 t

2
K

1

12
 t

3
C

1

32
 t

4
C

7

960
 t

5
CO t

6

or numerical:

deq:=(D@@2)(x)(t)-0.5*D(x)(t)+x(t)=0;
s2:=dsolve({deq,x(0)=1,D(x)(0)=0},x(t),numeric);

deq := D
2

x t K 0.5 D x t C x t = 0

s2 := proc x_rkf45 ... end proc

s2(2);

t = 2., x t =K0.987128948772179272,
d

dt
 x t =K1.59019568061103554
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Random numbers
restart;

Maple generates (pseudo) random numbers with the function rand. Asking for rand(); produces a 
(big) random number directly while  rand(a .. b); produces a random number generator (a procedure) 
which you can then use to get random numbers in the range a .. b.
Maple starts with a global variable _seed (which you can set if you want to produce the same 
sequence -- for testing for example) and then it uses some number theory to get the next random 
number you ask for and then uses this as the seed to get another one, and so on.

_seed:=100;rand();_seed;rand();_seed;
_seed := 100

741966908562

741966908562

111069327352

111069327352

You can make the seed somewhat random with randomize(); which sets it to something to do with 
the clock.

randomize();rand();
1233154478

918311113976

We'll make a die to give a random number in the range 1 .. 6.

die:=rand(1..6):
for i from 1 to 6 do die();end do;

4

4

6

5

6

5

Let's see how even its output is.

R:=[seq([i,0],i=1..6)]:
for i from 1 to 1000 do
a:=die();
R[a,2]:=R[a,2]+1;
end do:
R;

1, 161 , 2, 183 , 3, 154 , 4, 176 , 5, 177 , 6, 149
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Then we can plot it. Note that the compressed vertical scale makes it look more uneven than it is.

plot(R);

1 2 3 4 5 6

150

160

170

180

Let's do something similar for the sum of two (or more) dice. We end up with a triangular 

distribution .

rollem:=proc(n)
local R,i,j,a;
R:=[seq([i,0],i=1..6*n)]:
for i from 1 to 5000 do
a:=0;
for j from 1 to n do
a:=a+die();
end do;
R[a,2]:=R[a,2]+1;
end do:
return R;
end proc;

R:=rollem(2);
plot(R);

rollem := proc n

local R, i, j, a;

R := seq i, 0 , i = 1 ..6 * n ;

for i to 5000 do

a := 0; for j to n do a := aC die end do; R a, 2 := R a, 2 C 1

end do;

return R

end proc

R := 1, 0 , 2, 159 , 3, 261 , 4, 434 , 5, 582 , 6, 682 , 7, 863 , 8, 649 , 9, 562 ,

10, 381 , 11, 287 , 12, 140
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2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

The Central Limit Theorem says that the more dice you take the closer the distribution gets to a
Normal distribution.

R:=rollem(7);
plot(R);

R := 1, 0 , 2, 0 , 3, 0 , 4, 0 , 5, 0 , 6, 0 , 7, 0 , 8, 0 , 9, 0 , 10, 0 , 11, 4 ,

12, 5 , 13, 26 , 14, 37 , 15, 48 , 16, 81 , 17, 152 , 18, 172 , 19, 246 , 20,

282 , 21, 323 , 22, 343 , 23, 402 , 24, 433 , 25, 421 , 26, 404 , 27, 369 , 28,

319 , 29, 282 , 30, 187 , 31, 152 , 32, 118 , 33, 85 , 34, 43 , 35, 29 , 36,

22 , 37, 9 , 38, 5 , 39, 1 , 40, 0 , 41, 0 , 42, 0

10 20 30 40
0

100

200

300

400
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Shuffling

We make a procedure which produces a number in the range 1 .. n without having to make a 
separate procedure for each n.

spin:=proc(n) local r; r:=rand(1..n);r();end;
spin := proc n local r; r := rand 1 ..n ; r end proc

for i from 1 to 10 do spin(2); end do;
1

1

2

1

1

1

2

2

2

1

Now we'll shuffle (say) a pack of cards.
We start with a "deck" 1 .. n in order and remove cards at random to put into our shuffled set (which 
we'll call res (for result)). Note how we remove an element from a list using subsop. (There are 
other ways of doing it.)

shuffle:=proc(n)
local res,deck,i,choice;
res:=[];
deck:=[seq(i,i=1..n)];
for i from 1 to n do
choice:=spin(n+1-i);
res:=[op(res),deck[choice]];
deck:=subsop(choice=NULL,deck);
end do;
return res;
end proc;

shuffle := proc n

local res, deck, i, choice;

res := ;

deck := seq i, i = 1 ..n ;

for i to n do

choice := spin nC 1 K i ;

res := op res , deck choice ;

deck := subsop choice = NULL, deck
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end do;

return res

end proc

shuffle(5);
5, 2, 3, 4, 1

shuffle(52);
21, 7, 29, 1, 33, 25, 40, 17, 2, 23, 46, 37, 15, 39, 45, 20, 24, 43, 52, 9, 19, 41, 34, 14, 44,

31, 12, 8, 49, 48, 32, 11, 3, 35, 4, 5, 50, 16, 47, 51, 22, 18, 6, 26, 27, 42, 13, 28, 36, 10,

30, 38

We can shuffle in a different way -- recursively. We assume a pack of size n - 1 has been shuffled 
and then insert the last card at random.

We'll apply it to a list P.

shuffle0:=proc(P)
local n,res,choice;
n:=nops(P);
if n=1 then return P; end if;
res:=shuffle0(P[1..-2]);
choice:=spin(n);
return [op(res[1..choice-1]),P[-1],op(res[choice..-1])];
end proc;

shuffle0 := proc P

local n, res, choice;

n := nops P ;

if n = 1 then return P end if;

res := shuffle0 P 1 ..K 2 ;

choice := spin n ;

return op res 1 ..choice K 1 , P K 1 , op res choice ..K 1

end proc

shuffle0([1,2,3,4,5]);
2, 1, 3, 5, 4

shuffle0([seq(n,n=1..52)]);
51, 46, 44, 31, 16, 23, 43, 35, 3, 52, 19, 50, 20, 4, 39, 18, 12, 15, 11, 48, 45, 36, 26, 29, 41,

40, 21, 38, 5, 42, 32, 1, 28, 2, 7, 47, 14, 27, 33, 8, 24, 13, 17, 30, 37, 9, 22, 6, 10, 49, 25,

34

We can shuffle other things too:

P:=[seq(n,n="JOHN O'CONNOR")];
P := "J", "O", "H", "N", " ", "O", "'", "C", "O", "N", "N", "O", "R"
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shuffle0(P);
"O", "O", "C", " ", "O", "'", "O", "J", "H", "N", "N", "N", "R"
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An example of recursion: Sudoku

As most people know, Sudoku attempts to fill in a 9 by 9 Latin square (invented by Euler: no equal 
entries in rows or columns) with the additional condition that no pair in each of the nine 3 by 3 sub-
squares are equal.

restart;
We write a procedure to print the matrix split up into its 9 sub-squares.

pprint := proc(M)
local i,j,A,m,n;
 for i from 0 to 2 do
   A:=[Matrix(3),Matrix(3),Matrix(3)];
     for j from 0 to 2 do
      for m from 1 to 3 do
       for n from 1 to 3 do
        if M[3*i+m,3*j+n]=0 then A[j+1][m,n]:=` `;
        else A[j+1][m,n]:=M[3*i+m,3*j+n];end if;
      end do;end do;end do;
   print(A[1],A[2],A[3]);
 end do;
end proc:

We calculate which numbers can be put into a given "hole" in the matrix.

choice := proc(M, r, c)
 local i,j,ans,r1,c1;
  ans := {1,2,3,4,5,6,7,8,9};
  for i to 9 do
     ans:= ans minus {M[r,i]}; ans:= ans minus {M[i,c]}
  end do;
  r1:= iquo(r-1,3); c1:= iquo(c-1,3);
  for i from 3*r1+1 to 3*r1+3 do 
    for j from 3*c1+1 to 3*c1+3 do ans:= ans minus {M[i,j]}; 
end do;
  end do;
  return ans
end proc:

We check to see if we have filled in all the "holes". If we have not, we look for the hole with the 
fewest number of possibilities and try one of these. We repeat the process until either we have 
finished or we are stuck. In the latter case we go back and try the next possibility.
This is where recursion is used.

checkit := proc(M)
 global gotit,soln;
 local i,j,k,N,holes,nextone,ch,nextchoice;
 if not gotit then
   holes:=0; nextone:=[0,0,10]; N:=Matrix(9);
   for i from 1 to 9 do
     for j from 1 to 9 do
       N[i,j]:=M[i,j];
       if M[i,j]=0 then
         holes:=holes+1; ch:=choice(M,i,j);
         if nops(ch)<nextone[3] then nextone:=[i,j,nops(ch)];
end if;
       end if;
     end do;
   end do;
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   if holes=0 then 
     gotit:=true; soln:=M;
   elif nextone[3]<>10 then
     nextchoice:=choice(M,nextone[1],nextone[2]);
     for k in nextchoice do
       N[nextone[1],nextone[2]]:=k;
       checkit(N); !!! Recursion!
     end do;
   end if;
  end if;
end proc:

We feed in a matrix with 0's for the spaces.

M:=Matrix(9,
[
[0,0,3,0,9,0,1,0,0],
[0,5,0,3,0,0,7,0,0],
[1,0,2,0,0,5,0,6,4],
[0,1,0,0,2,0,9,0,0],
[2,0,0,6,0,3,0,0,1],
[0,0,7,0,8,0,0,3,0],
[7,6,0,9,0,0,8,0,5],
[0,0,8,0,0,7,0,9,0],
[0,0,4,0,6,0,2,0,0]
]):

The computers in the microlab take less than a second to find the solution!

pprint(M);print(` `);
gotit:=false:
checkit(M):
if gotit then pprint(soln); else print(`NO SOLUTION`);end if;
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` ` ` ` 3

` ` 5 ` `

1 ` ` 2

,

` ` 9 ` `

3 ` ` ` `

` ` ` ` 5

,

1 ` ` ` `

7 ` ` ` `

` ` 6 4

` ` 1 ` `

2 ` ` ` `

` ` ` ` 7

,

` ` 2 ` `

6 ` ` 3

` ` 8 ` `

,

9 ` ` ` `

` ` ` ` 1

` ` 3 ` `

7 6 ` `

` ` ` ` 8

` ` ` ` 4

,

9 ` ` ` `

` ` ` ` 7

` ` 6 ` `

,

8 ` ` 5

` ` 9 ` `

2 ` ` ` `

` `

4 7 3

8 5 6

1 9 2

,

2 9 6

3 4 1

8 7 5

,

1 5 8

7 2 9

3 6 4

3 1 5

2 8 9

6 4 7

,

7 2 4

6 5 3

1 8 9

,

9 8 6

4 7 1

5 3 2

7 6 1

5 2 8

9 3 4

,

9 3 2

4 1 7

5 6 8

,

8 4 5

6 9 3

2 1 7

You may change one of the entries in the original matrix and verify that no solution exists.

Countdown: another example of recursion

This implements the procedure of a well-known TV show.

The procedure carol (named for the previous expert!) is applied to a list of integers of length n 
(usually 6 -- often with one large (25, 50, 75 or 100) and 5 small (1 .. 10) ) and runs through all the 
combinations of these with +, -, * and / to produce all the possible lists of length n - 1 and then 
(recursively) all the lists of length n - 2 and so on.  It stops when it reaches lists of length 1 or when 
it finds the particular integer it was aiming at and and then it shows how it may be obtained.
If it is not possible it gets as near as it can.

It stores the various intermediate steps in the variable record If it could only get close  it prints out 
how it got there from the variable temprec.

The procedure randy generates some large and some small integers and chooses a number (global 
variable: aim) to aim for.
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restart;
spin:=proc(n) local r; r:=rand(1..n);r();end proc:

randy:=proc(big,small)
  local top,others,i,k,choice;
  global aim;
  choice:=[];top:=[25,50,75,100]; 
  others:=[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10];
  for i from 1 to big do
    k:=spin(nops(top));
    choice:=[op(choice),top[k]];
    top:=subsop(k=NULL,top);
  od;
  for i from 1 to small do
    k:=spin(nops(others));
    choice:=[op(choice),others[k]];
    others:=subsop(k=NULL,others);
  od;
  aim:=99+spin(900);
  return choice;
end proc:

carol:=proc(v)
global aim,gotit,record,count,closest,temprec;
local i,j,n,w,a,b,v0;
  n:=nops(v);
  count:=count+1;

  if member(aim,v) then ! we found it!
    gotit:=true;
    for i from 1 to n do record[i]:=[];end do;
  else
    for i from 1 to n do 
      if abs(v[i]-aim)<abs(closest-aim) then
        closest:=v[i];temprec:=record;
      end if;
    end do;
  end if;

  for i from 2 to n do ! run through all pairs of numbers
    for j from 1 to i-1 do

      a:=v[i];b:=v[j];

      if not gotit and a>1 and b>1 then !!  
products
        w:=a*b; record[n]:=[v,a,`*`,b,` --> `,w];
        v0:=subsop(i=w,j=NULL,v);
        carol(v0); !!!
recursion!
      end if;

      if not gotit then !!! sums
        w:=a+b;
        record[n]:=[v,a,`+`,b,` --> `,w];
        v0:=subsop(i=w,j=NULL,v);
        carol(v0);
      end if;
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      if not gotit then !!! differences
        if a>b then 
          w:=a-b; record[n]:=[v,a,`-`,b,` --> `,w];
          v0:=subsop(i=w,j=NULL,v);
          carol(v0);
        end if;
        if a<b then 
          w:=b-a; record[n]:=[v,b,`-`,a,` --> `,w];
          v0:=subsop(i=w,j=NULL,v);
          carol(v0);
        end if;
      end if;

      if not gotit then !!! quotients
        if b>=a and a>1 and b mod a=0 then 
          w:=b/a; record[n]:=[v,b,`/`,a,` --> `,w]; 
          v0:=subsop(i=w,j=NULL,v);
          carol(v0);
        elif b<a and b>1 and a mod b=0 then 
          w:=a/b; record[n]:=[v,a,`/`,b,` --> `,w]; 
          v0:=subsop(i=w,j=NULL,v);
          carol(v0);
        end if;
      end if;

    end do;
  end do;
end proc:

To make sure we don't get the same numbers every time!

randomize():

choice:=randy(1,5);
aim:=aim;!!

start:=time(): record:=[[],[],[],[],[],[]]:
closest:=0:gotit:=false:count:=0:
carol(choice);

if gotit then 
  print(`Got it in `,time()-start,` secs after `,count,` 
calculations`);
  for i from 6 to 2 by -1 do print(record[i]);end do;
else 
  print(`Couldn't get it in `,time()-start,` secs after `,
count,` calculations`);
  print(`Closest was `,closest);
  for i from 6 to 2 by -1 do print(temprec[i]);end do;
end if:

choice := 75, 8, 7, 2, 5, 4

aim := 879

Got it in , 3.843,  secs after , 343320,  calculations

75, 8, 7, 2, 5, 4 , 2, `C ,̀ 8,  --O , 10

75, 7, 10, 5, 4 , 5, `* ,̀ 10,  --O , 50
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75, 7, 50, 4 , 50, `C ,̀ 75,  --O , 125

7, 125, 4 , 125, `* ,̀ 7,  --O , 875

875, 4 , 4, `C ,̀ 875,  --O , 879

Test a particular case to see if it's possible

aim:=820;   L:=[50,7,5,1,6,7];

start:=time():record:=[[],[],[],[],[],[]]:
closest:=0:gotit:=false:count:=0:

carol(L);
w:=time()-start:

if gotit then 
print(`Got it in `,w,` secs after `,count,` calculations`);
for i from 6 to 2 by -1 do print(record[i]);end do;
else 
print(`Couldn't get it in `,w,` secs after `,count,` 
calculations`);
print(`Closest was `,closest);
for i from 6 to 2 by -1 do print(temprec[i]);end do;
end if:
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aim := 820

L := 50, 7, 5, 1, 6, 7

Couldn't get it in , 7,  secs after , 668154,  calculations

Closest was , 819

50, 7, 5, 1, 6, 7 , 7, `C ,̀ 50,  --O , 57

57, 5, 1, 6, 7 , 5, `C ,̀ 57,  --O , 62

62, 1, 6, 7 , 1, `C ,̀ 62,  --O , 63

63, 6, 7 , 7, `C ,̀ 6,  --O , 13

63, 13 , 13, `* ,̀ 63,  --O , 819

Sums of two squares

Asking which integers can be written as a sum of one or two squares goes back to Diophantus of 
Alexandria. The answer was given by the Dutch mathematician Albert Girard in 1625 and by
Fermat a little later. The first proof was given by Euler in 1749.

n:=100:
S:={}:
for i from 1 to 10 do
for j from 0 to i do
c:=i^2+j^2;
if c<=n then S:=S union {c}; end if;
end do;end do:
S;

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53,

58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100

Let's see the factorisation of all these numbers.

T:=[]:
for i from 1 to nops(S) do T:=[op(T),ifactor(S[i])];end do:
T;

1, 2 , 2
2
, 5 , 2

3
, 3

2
, 2  5 , 13 , 2

4
, 17 , 2  3

2
, 2

2
 5 , 5

2
,

2  13 , 29 , 2
5
, 2  17 , 2

2
 3

2
, 37 , 2

3
 5 , 41 , 3

2
 5 , 7

2
,

2  5
2
, 2

2
 13 , 53 , 2  29 , 61 , 2

6
, 5  13 , 2

2
 17 , 2

3
 3

2
,

73 , 2  37 , 2
4
 5 , 3

4
, 2  41 , 5  17 , 89 , 2  3

2
 5 , 97 ,

2  7
2
, 2

2
 5

2

More easily, Maple will let you apply a function to every member of a list or set.
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ifactor(S);

1, 89 , 29 , 37 , 53 , 61 , 73 , 97 , 2  7
2
, 2

2
 5

2
, 2 , 5 , 13 , 17 ,

41 , 2  41 , 5  17 , 2  5 , 2
2
 5 , 2  3

2
, 3

2
 5 , 2

2
 3

2
, 2

4
,

5
2
, 2  13 , 2

5
, 2  17 , 2

2
, 3

2
, 2

3
, 2  3

2
 5 , 2

3
 5 , 2

3
 3

2
,

2  37 , 3
4
, 2

4
 5 , 7

2
, 2

2
 13 , 2  29 , 2

6
, 5  13 , 2

2
 17 ,

2  5
2

ifactor(sort(convert(S,list),isprime));

2 , 5 , 13 , 17 , 29 , 37 , 41 , 53 , 61 , 73 , 89 , 97 , 2
2
 5

2
,

2  7
2
, 2  3

2
 5 , 5  17 , 2  41 , 3

4
, 2

4
 5 , 2  37 , 2

3
 3

2
,

2
2
 17 , 5  13 , 2

6
, 2  29 , 2

2
 13 , 2  5

2
, 7

2
, 3

2
 5 , 2

3
 5 ,

2
2
 3

2
, 2  17 , 2

5
, 2  13 , 5

2
, 2

2
 5 , 2  3

2
, 2

4
, 2  5 , 3

2
,

2
3
, 2

2
, 1

The only primes in this list are of the form 2 or  4 k + 1.

In fact the numbers which can be written as a sum of two squares are those in which all the primes 
of the form 4k + 3 are present as even powers in the factorisation.

The set S above is "multiplicatively closed". One meets it as the set of norms of Gaussian integers.

Number of different ways

Let us investigate the number of different ways a number can be written as a sum of two squares.

Maple won't let you use a "dynamic" list of size bigger than 100. To store more use a "static" array 
(whose size stays fixed).

n:=200:
S:=array(1..n,[0$n]):
t:=evalf(sqrt(n)):
for i from 1 to t do
for j from 0 to i do
c:=i^2+j^2;
if c<=n then S[c]:=S[c]+1;end if;
end do;
end do:
print(S);

1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 

0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 

1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0, 

0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 

0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 
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1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 2

for i from 1 to n do
if S[i]>1 then print(ifactor(i)); end if;
end do:

5
2

2  5
2

5  13

5  17

2
2
 5

2

5
3

2  5  13

5  29

13
2

2  5  17

5  37

2
3
 5

2

And so it appears that the elements which can be written as a product in two ways all have two 

factors of the form 4k + 1 -- except for 5
3
. 

Repeat this (with a bigger n) to get an estimate for when one can write a number as a sum of squares
in 3 ways.

n:=1000:
S:=array(1..n,[0$n]):
t:=evalf(sqrt(n)):
for i from 1 to t do
for j from 0 to i do
c:=i^2+j^2;
if c<=n then S[c]:=S[c]+1;end if;
end do;
end do:

for i from 1 to n do
if S[i]>2 then print(ifactor(i)); end if;
end do:

5
2
 13

5
2
 17

5
4

2  5
2
 13

5
2
 29

5  13
2
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2  5
2
 17

5
2
 37

n:=50000:
S:=array(1..n,[0$n]):
t:=evalf(sqrt(n)):
for i from 1 to t do
for j from 0 to i do
c:=i^2+j^2;
if c<=n then S[c]:=S[c]+1;end if;
end do;
end do:

S[5^3*13^2];S[2*5^2*13^2];S[2^2*5*13^3];
6

5

4

The actual result is quite complicated.

If all the primes of the form 4 k + 3 in n present as even powers then one can write it as a sum of one 
or two squares. 

If the primes of the form 4 k + 1 in n are p
1

r
1
 p

2

r
2
... p

k

r
k
 then put B = r

1
C 1  r

2
C 1  ... (r

k
C 1) and 

the number of ways is B/2 if B is even, otherwise it is (BC 1)/2

The number of factors of 2 or of the form 4 k + 3  make no difference to the number of ways one can 
write it as a sum of squares.

Continued fractions

Here is one way of thinking about Continued fractions :

You can regard calculating the decimal expansion of a (positive) real number as the result of 
implementing the algorithm:

(*) Make a note of the integer part of the number. Subtract this from the number. 
This  gives a number x in the range [0,1). If x $ 0 then:

**  Multiply x by 10  **

This (perhaps) gives a number # 1. 
Now repeat the loop from (*).

We can replace the step at  **  ...  ** by anything else that makes x bigger.
In particular, if we put in:
**  Take the reciprocal 1/ x of x  **
then the sequence of integers we get is the Continued fraction expansion  of x.
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We'll use Maple to calculate the first n terms in this expansion.

To round down a real number x Maple uses floor(x).

cf:=proc(r,n)
local ans,s,i;
ans:=[];s:=r;
for i from 1 to n do
ans:=[op(ans),floor(s)];
s:=s-floor(s);
if s<>0 then s:=1/s;end if;
end do;
ans;
end proc; 

cf := proc r, n

local ans, s, i;

ans := ;

s := r;

for i to n do

ans := op ans , floor s ; s := s K floor s ; if s!O0 then s := 1 / s end if

end do;

ans

end proc

The continued fraction expansion of a rational number (a fraction) vanishes after a certain number 
of steps.

cf(12346/56789,10);
0, 4, 1, 1, 2, 189, 1, 1, 6, 0

For irrational numbers we need to work with a decimal expansion and then we must tell Maple what
accuracy to work to.

If we want it to work to 20 significant figures, we enter:  Digits:=20; (Note the capital letter!) It will 
stay at that until you restart; or reassign Digits.

Digits:=50:
cf(evalf(Pi),40);

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6,

99, 1, 2, 2, 6, 3, 5

cf(evalf(exp(1)),50);
2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22,

1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1

Continued fractions of square roots of integers repeat themselves:
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cf(sqrt(117),40);
10, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1, 20, 1, 4, 2, 4, 1, 20, 1, 4,

2, 4, 1, 20, 1, 4, 2

and so does the continued fraction of anything of the form 
aC b

c
 with a, b, c integers.

r:=evalf((sqrt(5)+1)/2);
cf(r,30);

r := 1.6180339887498948482045868343656381177203091798058

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

We can reverse the above process to get a (rational) number from a (finite) continued fraction.

build:=proc(C)
local x,i;
x:=0;
for i from 1 to nops(C) do
x:=x+C[-i];
if x<>0 then x:=1/x;end if;
end do;
return 1/x;
end proc;

build := proc C

local x, i;

x := 0;

for i to nops C do x := xCC K i ; if x!O0 then x := 1 / x end if end do;

return 1 / x

end proc

build([1,11,2,3]);
87

80

C:=[1,2,3,4,5];
r:=build(C);
cf(r,8);

C := 1, 2, 3, 4, 5

r :=
225

157

1, 2, 3, 4, 5, 0, 0, 0

r:=1234/6789;
C:=cf(r,10);
build(C);

r :=
1234

6789

C := 0, 5, 1, 1, 153, 1, 3, 0, 0, 0



96

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

O O 

1234

6789

Continued fractions give a (good) way of approximating reals by rationals.

buildall:=proc(C)
local L,i;
L:=[];
for i from 1 to nops(C) do
L:=[op(L),build(C[1..i])];
end do;
return L;
end proc; 

buildall := proc C

local L, i;

L := ; for i to nops C do L := op L , build C 1 ..i end do; return L

end proc

buildall([1,1,1,1,1,1,1,1,1,1,1,1,1,1]);

1, 2,
3

2
,

5

3
,

8

5
,

13

8
,

21

13
,

34

21
,

55

34
,

89

55
,

144

89
,

233

144
,

377

233
,

610

377

Note the Fibonacci numbers in the numerators and denominators.

C:=cf(Pi,10);
L:=buildall(C);

C := 3, 7, 15, 1, 292, 1, 1, 1, 2, 1

L := 3,
22

7
,

333

106
,

355

113
,

103993

33102
,

104348

33215
,

208341

66317
,

312689

99532
,

833719

265381
,

1146408

364913

evalf(L,12);
evalf(Pi,12);

3., 3.14285714286, 3.14150943396, 3.14159292035, 3.14159265301, 3.14159265392,

3.14159265347, 3.14159265362, 3.14159265358, 3.14159265359

3.14159265359

Note that there is an ambiguity for continued fraction expansions ending in 1 or with 0 in the list.

cf(build([5,4,3,2,1]),5);
cf(build([1,0,2,3,4,5]),5);

5, 4, 3, 3, 0

3, 3, 4, 5, 0

Maple has "built-in" continued fractions which you can find out about with: ?confrac; . You can 
then explore some of the discoveries of (among others) Leonhard Euler:

convert(exp(1),confrac,37);

2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22,
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1, 1, 24, 1

convert((exp(2)-1)/(exp(2)+1),confrac,29);

0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49,

51, 53, 55

convert((exp(1)-1)/(exp(1)+1),confrac,28);

0, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94,

98, 102, 106

convert((exp(1/2)-1)/(exp(1/2)+1),confrac,24);

0, 4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164,

172, 180

The numbers which occur in certain of the convergents of the (periodic) continued fractions of 
square roots can be used to solve Pell's equation.

convert(sqrt(6),confrac,10,'cgt');cgt;

2, 2, 4, 2, 4, 2, 4, 2, 4, 2

2,
5

2
,

22

9
,

49

20
,

218

89
,

485

198
,

2158

881
,

4801

1960
,

21362

8721
,

47525

19402

For example (x, y) = (5, 2) or (49, 20) or (485, 198) or ... satisfy x
2
K 6 y

2
= 1.

Geometry package: Menelaus's theorem

The geometry package allows you to work with a variety of geometric objects: point, lines, circles, ..
. and investigate their properties. 
You access the functions in the package using:

restart; with(geometry);
Apollonius , AreCollinear , AreConcurrent, AreConcyclic , AreConjugate, AreHarmonic,

AreOrthogonal, AreParallel, ArePerpendicular , AreSimilar, AreTangent,

CircleOfSimilitude , CrossProduct, CrossRatio, DefinedAs, Equation, EulerCircle,

EulerLine, ExteriorAngle, ExternalBisector , FindAngle, GergonnePoint,

GlideReflection , HorizontalCoord, HorizontalName, InteriorAngle, IsEquilateral,

IsOnCircle, IsOnLine, IsRightTriangle, MajorAxis, MakeSquare, MinorAxis,

NagelPoint, OnSegment, ParallelLine, PedalTriangle, PerpenBisector ,

PerpendicularLine, Polar, Pole, RadicalAxis , RadicalCenter , RegularPolygon ,

RegularStarPolygon , SensedMagnitude, SimsonLine, SpiralRotation , StretchReflection ,

StretchRotation , TangentLine, VerticalCoord , VerticalName, altitude, apothem, area,
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asymptotes, bisector, center, centroid, circle, circumcircle, conic, convexhull,

coordinates, detail, diagonal, diameter, dilatation , directrix, distance, draw, dsegment,

ellipse, excircle, expansion, foci, focus, form, homology, homothety, hyperbola, incircle,

inradius, intersection , inversion, line, medial, median, method, midpoint, orthocenter,

parabola, perimeter, point, powerpc, projection , radius, randpoint, reciprocation ,

reflection , rotation, segment, sides, similitude, slope, square, stretch, tangentpc,

translation, triangle, vertex, vertices

It makes life easier if you tell Maple at the beginning how you are going to label your axes.

_EnvHorizontalName:=x;_EnvVerticalName:=y;
_EnvHorizontalName := x

_EnvVerticalName := y

We'll investigate a theorem discovered by Menelaus of Alexandria in about 100AD.
If a line meets the sides a, b, c of a triangle ABC in points D, E, F then the product of the ratios

 
BD

DC
  

CE

EA
  

AF

FB
 = -1.

point(A,0,0),point(B,1,0),point(C,0.6,0.7); ! Note the 
commas!

A, B, C

line(a,[B,C]),line(b,[A,C]),line(c,[A,B]);
a, b, c

line(m,y=-0.4*x+0.5);
m

intersection(D,a,m),intersection(E,b,m),intersection(F,c,m);
D, E, F

a1:=SensedMagnitude(B,D);a2:=SensedMagnitude(D,C);
b1:=SensedMagnitude(C,E);b2:=SensedMagnitude(E,A);
c1:=SensedMagnitude(A,F);c2:=SensedMagnitude(F,B);

a1 := K0.1493010694

a2 := K0.6569247054

b1 := K0.4315531448

b2 := K0.4904013010

c1 := 1.250000000

c2 := K0.2500000000

a1/a2*b1/b2*c1/c2;
K1.000000000

draw({a,b,c,m(colour=red),A,B,C,D,E,F},view=[-1..1.5,-0.5.
.1],axes=none,printtext=true,colour=black);
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E

C

D
B F

You can now repeat this with a different triangle and a different line.

Ceva's theorem

More than 1500 years later in 1678 the Italian mathematician Giovanni Ceva discovered a rather 
similar theorem.
If points D, E, F lie on the sides a, b, c of a triangle ABC and the lines AD, BE, CF are concurrent 

then the product of the ratios    
BD

DC
  

CE

EA
  

AF

FB
 = 1.

point(G,0.5,0.2);
G

line(d,[A,G]),line(e,[B,G]),line(f,[C,G]);
d, e, f

intersection(D,a,d),intersection(E,b,e),intersection(F,c,f);
D, E, F

a1:=SensedMagnitude(B,D);a2:=SensedMagnitude(D,C);
b1:=SensedMagnitude(C,E);b2:=SensedMagnitude(E,A);
c1:=SensedMagnitude(A,F);c2:=SensedMagnitude(F,B);

a1 := K0.3749887325

a2 := K0.4312370424

b1 := K0.5296334050

b2 := K0.3923210407

c1 := 0.4600000000
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c2 := 0.5400000000

a1/a2*b1/b2*c1/c2;
0.9999999996

draw({a,b,c,d(colour=red),e(colour=red),f(colour=red),A,B,C,
D,E,F,G(colour=blue)},view=[-1..1.5,-0.5..1],axes=none,
printtext=true,colour=black);

B

C

D

F

E
G

A

Product of chords
restart; with(geometry):
_EnvHorizontalName:=x:_EnvVerticalName:=y:

randomize():
See the picture below:
If AB and CD are chords of a circle meeting in E then:    AE.EB = CE.ED

circle(cc,[point(A,0,0),point(B,1,0),point(C,0.6,0.7)],
'centername'=O);

cc

randpoint(D,cc);
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D

detail(D);
name of the object:  D

form of the object:  point2d

coordinates of the point:  [.4782617403, -.3519143895]

line(ch1,[A,B]),line(ch2,[C,D]);
ch1, ch2

intersection(E,ch1,ch2);
E

a1:=distance(A,E);a2:=distance(B,E);
b1:=distance(C,E);b2:=distance(D,E);

a1 := 0.5189888617

a2 := 0.4810111383

b1 := 0.7046721255

b2 := 0.3542632297

evalf(a1*a2-b1*b2);
0.

draw([cc(colour=COLOUR(RGB,0.5,0.5,0.5)),A,B,C,D,E,ch1
(colour=red),ch2(colour=red)],printtext=true,view=[-0.1..2,
-0.5..1],axes=none);
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Ptolemy's theorem

 If A, B, C, D are four points on a circle then    AB.CD + BC.DA = AC.BD

Discovered by Ptolemy (85 to 165AD) one of the foremost of the late Greek mathematicians and 
astronomers.
We'll use the last calculation.

a1:=distance(A,B);a2:=distance(C,D);
b1:=distance(B,C);b2:=distance(D,A);
c1:=distance(A,C);c2:=distance(B,D);

a1 := 1

a2 := 1.058796651

b1 := 0.8062257748

b2 := 0.4553066234

c1 := 0.9219544457

c2 := 0.7502721188
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evalf(a1*a2+b1*b2-c1*c2);
0.7341598706

Unfortunately it only works if A, B, C, D are in this order around the circle!

evalf(-a1*a2+b1*b2+c1*c2);

K4. 10
-10

Pascal's theorem

 Pascal's Magic Hexagram  

If a hexagram is inscribed in a circle then the meets of opposite sides are collinear.

Discovered by Blaise Pascal (1623 to 1662) when he was 16 years old.

point(O,0,0):circle(cc,[O,1]):

randpoint(A,cc):randpoint(B,cc):randpoint(C,cc):
randpoint(D,cc):randpoint(E,cc):randpoint(F,cc):

line(a,[A,B]):line(b,[B,C]):line(c,[C,D]):line(d,[D,E]):line
(e,[E,F]):line(f,[F,A]):

intersection(P,a,d):intersection(Q,b,e):intersection(R,c,f):

AreCollinear(P,Q,R);
false

line(p,[P,Q]): distance(R,p); ! In fact it's only rounding error 
that stops them from appearing on the same line

6.771136670 10
-10

draw([cc(colour=COLOUR(RGB,0.5,0.5,0.5)),a,b,c,d,e,f,A,B,C,D,
E,F,P,Q,R,p(colour=blue,thickness=2)],axes=none,printtext=
true,colour=black);
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Q

R

The Euler line

By using variables  for coefficients of the points we construct, we can get Maple to prove geometric 
theorems rather than just look at special cases.

Actually, it will turn out to be not quite as easy as it seems.

restart;with(geometry):
_EnvHorizontalName:=x:_EnvVerticalName:=y:

We'll investigate a result on triangle geometry due to Leonhard Euler (1707 to 1783).

We can assume that two vertices of our triangle are at given points and make the third variable.

point(A,0,0),point(B,1,0),point(C,p,q);
A, B, C

To get a triangle out of these we have to make sure they are not collinear or Maple won't handle 
them.
We add "assumptions" about the variables as we need them. Maple then tags these variables with a 
~.
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assume(q>0);
triangle(t,[A,B,C]);

t

We can find the circumcentre  O (the centre of the circle through the vertices), the orthocentre H (the 
meet of the altitudes) and the centroid G (the meet of the medians) 

circumcircle(cc,t,centername=O);
cc

orthocenter(H,t);
H

centroid(G,t);
G

Euler proved that  O, G, H are collinear. They lie on the Euler line. He also showed that |GH| =  2*
|OG|

AreCollinear(O,H,G);
true

gh:=distance(G,H);og:=distance(O,G);

gh :=
1

3
K

2

3
 p

2

C
1

3
 q~C

p
2
K p

q~

2

og :=
1

6
K

1

3
 p

2

C K
1

2
 
Kp

2
K q~

2
C p

q~
K

1

3
 q~

2

simplify(gh/og);
2

To define the line we need another assumption

assume(p>1/2);
line(e,[O,G]);

e

This completes the proof of the theorem.

To draw a picture we will have to take specific values for p and q and then define everything again

p:=0.6:q:=0.7:
point(A,0,0),point(B,1,0),point(C,p,q):
triangle(t,[A,B,C]):
circumcircle(cc,t,centername=O):
orthocenter(H,t):
centroid(G,t):
line(e,[O,G]):

draw([t(colour=red),e(colour=blue,thickness=2),O,H,G], axes=
none,printtext=true,colour=black);
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The nine-point circle

Now we'll look at another result that Euler could have discovered (but didn't!). It is due to Karl 
Feuerbach (1800 to 1834).

The midpoints of the sides of a triangle, the feet of the altitudes and the midpoints of the lines 

joining each vertex to the orthocentre lie on a circle.

This is called the Nine-point circle . Its centre lies on the Euler line.

p:='p':q:='q':
assume(q>0,p>1/2,(p-1)^2+q^2>0,p^2+q^2>0);

point(A,0,0),point(B,1,0),point(C,p,q);
triangle(t,[A,B,C]):
circumcircle(cc,t,centername=O):
orthocenter(H,t):
centroid(G,t):
line(e,[O,G]):
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A, B, C

midpoint(A1,B,C),midpoint(B1,A,C),midpoint(C1,B,A);
A1, B1, C1

altitude(aa,A,t,A2),altitude(bb,B,t,B2),altitude(cc,C,t,C2);
aa, bb, cc

midpoint(A3,A,H),midpoint(B3,B,H),midpoint(C3,C,H);
A3, B3, C3

circle(npc,[A1,B1,C1],centername=N):
IsOnCircle([A1,B1,C1,A2,B2,C2,A3,B3,C3],npc);

true

IsOnLine(N,e);
true

This completes the proof of the theorem.

To draw a picture we will have to take specific values for p and q and then define everything again

p:=0.7:q:=0.6:
point(A,0,0),point(B,1,0),point(C,p,q);
triangle(t,[A,B,C]):
circumcircle(cc,t,centername=O):
orthocenter(H,t):
centroid(G,t):
line(e,[O,G]):
midpoint(A1,B,C),midpoint(B1,A,C),midpoint(C1,B,A);
altitude(aa,A,t,A2),altitude(bb,B,t,B2),altitude(cc,C,t,C2);
midpoint(A3,A,H),midpoint(B3,B,H),midpoint(C3,C,H);
circle(npc,[A1,B1,C1],centername=N);

A, B, C

A1, B1, C1

aa, bb, cc

A3, B3, C3

npc

draw([t(colour=red),e(colour=blue,thickness=2),O,H,G,A1,A2,
A3,B1,B2,B3,C1,C2,C3,npc(colour=black),N,aa(colour=red),bb
(colour=red),cc(colour=red)], axes=none,printtext=true,
colour=black);
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A summary of Maple commands 

Elementary calculations, manipulations, etc. 

Maple will work like an ordinary calculator. Type in your sum, put a semi-colon 

after each calculation and then press the Return or Shift key. You can put more 

than one calculation on a line, but you must put a ; after each one. If you use a : 

instead, Maple will do the calculation but won't print it out. 

You can move on to a new line (without calculating) using Shift-Return.  

Use the usual symbols +, – for addition and subtraction. Use * and / for 

multiplication and division. Use ^ for to the power of  and remember that the 

computer will stick strictly to the correct order when doing arithmetic. Use round 

brackets to alter this order if you want.  

If it can Maple will produce exact answers containing fractions or square roots of 

fractions. 

If you want the answer as a decimal then use evalf(expression, [number of 

figures]) which evaluates the expression as a floating point number. Without the 

second argument you get the default (which is 10).  

You can get Maple to calculate to higher accuracy with (say) Digits:=15; 

Use % for the last expression that Maple calculated and  %%  for the one before. 

Maple recognises the usual functions like sqrt, sin, cos, tan, ... , arcsin, arctan, ... 

as well as exp, log = ln, log[10] = log10, ... and lots of other functions. 

To use them, put ( ) around what you evaluate. 

The number ! lives in Maple as Pi. 

Maple has many other functions: For example, the function ifactor (for integer 

factorise) can be applied to an integer (or even a fraction) to write it as a product of 

prime factors and the function isprime tells you if an integer is a prime number or 

not.  

The function factorial (or n!) calculates  1 ! 2 ! 3 ! ... ! n. 

expand(expr) will “multiply out” an arithmetic expression, a polynomial 

expression, a ratio of polynomials or a trigonometric expression. 

factor will try to factorise a polynomial with integer (or fractions) as coefficients. 

sort(expr) and collect(expr, x) will sort the terms of a polynomial and collect terms 

in xn together. The coefficients of a polynomial can be obtained using coeff(p, x, n) 
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simplify(expr) will attempt to simplify an expression. You can see the help files 

for any command by typing ?command or by highlighting the command and using 

the Help menu. 

To put in comments when the cursor is at a Maple prompt  >  either use the Insert 

text item from the Insert menu, or the keyboard shortcut Control-T or click on 

the  T  on the Tool bar.  

You can put in formulae using Control-R or the Standard Math Text item from 

the Insert menu 

When you have finished, start a new Execution group (what Maple calls the group 

enclosed by a bracket at the left) by using the item Execution group in the Insert 

menu, by using one of the keyboard shortcuts Control-J or Control-K or click on 

the  [>  on the Tool bar.  

You can use the same method to get a new execution group anywhere in your 

worksheet and then, if you wish, you can use this to insert some explanatory text. 

 

Assignment, differentiation, integration 

a:=1; assigns the value 1 to the “store” or “variable” a. Lots of things, including 

numbers and expressions, can be stored in this way.  

If you store an unassigned variable x (or an expression containing x) in a variable a 

then altering x will also alter a. If the variable x already had something assigned to 

it before assigning it to a, then a will not be affected by changing x. 

a:='a'; unassigns this variable — and makes it back into a proper variable again. 

restart; unassigns all variables. 

subs(x = a, y = b, ..., expr) substitutes a for x, b for y, ... in the expression. 

f:= x -> expr assigns to the variable f the “rule” or “function” that maps x to the 

expression. You can evaluate it at a point a say, by f(a); 

Note that the function f is different from the expression f(x) (which is the function 

evaluated at the “point” x). 

diff(expr, x) differentiates the expression with respect to the variable x. You cannot 

differentiate (or integrate) with respect to a variable which has had something 

assigned to it. Any other variables in the expression will be treated as constants 

when differentiating. 

You can differentiate twice using diff(expr, x,x) or diff(expr, x$2). 
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The operator D can be applied to a function to get the differentiated function. 

Diff (with a capital letter) returns the formula for the derivative, but does not do 

the differentiation. 

int(expr, x) calculates the indefinite integral wrt x (if it can — integration  can be 

difficult). 

int(expr, x = a..b) calculates the definite integral of the expression from a to b. Use 

evalf to get a numerical answer if you need one. You can even make a or b infinity 

or –infinity if you want. 

Int (capital letter) returns the formula for the integral. 

If a function has been assigned to f, you cannot differentiate, integrate (or plot) f 

without turning it into an expression by, for example, putting it in as (say) f(x).  As 

in, for example  

f:= x->x^2; diff(f(x), x); 

 

 

Plotting 

plot(expr, x = a..b) plots the graph of y = the expression, for values of x between a 

and b. 

If you leave out the range: plot(expr, x) then Maple takes it to be –10 ! x ! 10. 

plot([expr1, expr2], x = a..b, c..d) or plot([expr1, expr2], x = a..b, y=c..d) plots the 

two graphs on the same axes and uses the specified ranges for the (horizontal) x 

axis and the vertical axis. 

You can plot individual points as (for example) plot({[1, 1], [2, 2], [2, 1]}, 

style=point); and can choose to join them up if you wish. 

To plot a function (or procedure) f do not mention the variable: plot(f, 0..1); or use 

single quotes: plot('f(x)', x=0..1); 

To plot a curve given parametrically by x = p(t), y = q(t) use  

plot([p(t), q(t), t = 0..10]);  

You can put other options inside the round brackets. 

In particular, to plot a  curve given in polar coordinates by r = f(!) use  

plot([f, t, t = 0..Pi], coords = polar); 



 112 

To plot points given in a list L of lists [x, y], use plot(L, style = point); and again 

other options can be put inside the round brackets.  

If you don’t put in style = point, Maple will join up the points with lines. 

 

Plotting (a projection of) a surface in three dimensions given by an equation z = 

f(x, y) (an expression) for (say) 0 < x < 1 and 0 < y < 1 can be done with  

plot3d (f, x = 0..1, y = 0..1).  

As above there are lots of options you can put in. If you want to make the range of 

z (say) 0..1 you do it with view = 0..1. 

If you want to plot more than one expression then you must put the expressions in 

{ } brackets. 

To plot a surface given parametically by x = x(p, q), y = y(p, q), z = z(p, q) with 

(say) 0 < p < 1 and  0 < q < 1 use plot3d([x, y, z], p = 0..1, q = 0..1). 

You can display several plots together by assigning the plots to variables P, Q 

(say) and then using the display function from the plots package: 

plots[display](P, Q); 

You can animate a sequence of such plots by using the display function to show a 

list of plots and putting in insequence=true. 

 

 

Solving 

The command solve(equation, x) tries to solve the equation for x. The variable x 

had better be unassigned. 

If you just want to see the floating point answer, you can use fsolve(equation, x). 

To get Maple to find solutions lying in a range a ! x ! b you can use 

fsolve(equation, x=a..b). 

If there are several solutions, you can assign them to a list by, for example, s := 

solve(eqn, x) and then ask for s[1], s[2], etc. to get the first, second, ... 

You can solve simultaneous equations for (say) x and y using  

solve({eqn1, eqn2}, {x, y}).  

Similarly, fsolve({eqn1, eqn2}, {x, y}) or fsolve({eqn1, eqn2}, {x=a..b, y=c..d}) 

will give the numerical answers.
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Looping 

You can make Maple repeat a calculation a given number of times using a for-

loop. 

for  i  from  1  to  100  do   ...     end do;   will go through the instructions between 

do and end do 100 times. 

If you want to stop Maple printing everything it does, finish the loop with a colon :  

You can then ask it to print some of what is going on using print(something, 

something else). 

It will print the things you ask for (with commas between if there is more than one 

thing) with a new line each time it implements the print statement. 

If you want to include text, you have to put in back-quotes  `   ...   `  (to get these 

use the key at the top left of the keyboard). 

Examples of other forms of a for-loop are: 

for  i  from  1  to  100  by  3  do   ...     end do; which increases the value of i by 3 

each time it goes through the loop.  

You can use: for  i  from  10  to  1  by  –1  do   ...    end do;  to decrease i. 

for  i  in  [1,  2,  5,  10]  do   ...     end do; makes i take the values in the list 

successively. 

Another form of loop is a while-loop. This has the form: 

while boolean expression do   ...   end do;  

where the boolean expression evaluates to give either True or False.  

Maple will repeat the instructions between do and end do until the boolean 

expression becomes False. If you make a mistake, it might continue for ever, but 

you can stop it by clicking on Stop on the menu-bar. 

 

 

If clauses 

You can use a boolean expression to choose between alternatives using an if-

clause. 

if boolean expression then  ...  end if; will make Maple do what is between then 

and end if provided the boolean expression evaluates to True. 
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Alternative forms are: if boolean expression then  ...  else  ...  end fi; or the more 

elaborate: 

if boolean expression then  ...  elif another boolean expression then  ...  else  ...  

end if; 

You can put in lots of other elif (= else if) bits if you want. 

 

 

Lists, Sets and Summing 

A list is an ordered set of elements (or operands). L := [a, b, c, d]; 

It lives between [ ] and has commas between its elements. 

The elements can be numbers, expressions, variables, other lists, ... 

The empty list is [ ]. You can get at an element of a list (if there is one) by asking 

for it by its index (or number): L[3];  L[3 .. 5]; The last element of a list is L[-1] 

and the one before is L[-2], etc. 

You can assign to elements of a list in the same way as you can to any variable: 

L[3] := 4; 

The number of elements in a list L is nops(L) (which stands for number of 

operands). 

A sequence is like the contents of a list (without the brackets). 

You can make a sequence with (say) seq(expression, n = 1 .. 20); and make this 

into a list by putting it between [ ]. For example [seq(0, n=1..10)]; produces a 

sequence of 10 zeros. 

The sequence of elements of a list L is op(L) (which stands for the operands of L). 

You can add to the elements of a list using L := [op(L), new elements]; 

You can sort a list L with sort(L); 

Sets are like lists, but unordered and with no repetitions. They live inside { }. 

You can deal with them using the operators union, intersection and minus. 

You can use a for-loop to sum a sequence, but Maple has a special function to do 

this: sum(expression, n = 1 .. 20) sums the terms obtained by substituting n = 1, 2, 

3, ... , 20 in the expression. You can sometimes get Maple to give the general 

formula for a sum and can sometimes even sum for n = 1 .. infinity. 
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Procedures 

A procedure can be used to define more complicated functions than the ones 

given using an assignment f := x –> a formula involving x. 

For example,  f := x –> x^2; is really shorthand for f := proc(x) x^2; end proc; 

The last expression in the procedure, immediately before end proc, is the value 

that the procedure returns. The parameters inside the brackets are described as 

being "passed to the procedure". Even if there aren't any such parameters to pass, 

you still have to put in the brackets! 

If the procedure involves a complicated calculation with assignment to extra 

variables, these can be declared as local variables and will not then affect the 

values of variables used outside the procedure which happen to have the same 

names. If you don’t declare them as local variables, Maple will rather crossly tell 

you that it has done the job for you.  

You cannot use the parameters that are passed to the procedure as variables which 

can be assigned to. 

If you do want the procedure to access variables you have already used, you can 

declare them as global. and if you change them inside the procedure, the values 

ouside will be altered. 

To plot a function defined by a procedure, do not mention the variable. For 

example to plot a function defined by a procedure fn: 

plot(fn, -1 ..1); 

If you do need to mention the variable (for example if you want to simultaneously 

plot a function given by an expression ex, say) then you can enclose things in 

single quotes. 

plot(['fn(x)', ex],  x = 0 .. 1); 
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The Linear Algebra package 
To use the commands in the LinearAlgebra package enter with(LinearAlgebra):  

(If you put a ; you get a list of all the available commands.)  

If you ever use restart; you will have to read the package in again. 

 

The LinearAlgebra package lets you work with Matrices (and Vectors). Note that 

all the commands in this package have capital letters. 

A:=Matrix(2, [[a, b], [c, d]]); produces a square matrix with rows taken from the 

list of lists in the second parameter. 

B:=Matrix(2, 3, [[a, b, c], [d, e, f]]); makes a matrix with 2 rows and 3 columns. 

If you don't tell it what the entries are it fills up with zeros. 

You can make a matrix of (say) 3 rows by  

A := < <a | b | c> , <d | e | f> , <g | h | i> >;  

or of 3 columns by B := < <a , b , c> | <d , e , f> | <g , h , i> >; 

There is something called the matrix palette (on the View menu) which can help. 

You can make a matrix whose entries are given by some formula by using a double 

for-loop, or by using (say) C := Matrix(3, 5 ,(i, j) -> i+2*j); 

You can even get a matrix with "undefined" entries by X := Matrix(3, 3, (i, j) -> 

x[i, j]); 

You can add and subtract matrices of the same shape. You can multiply a matrix 

by a constant (or a variable) by a*M; You can multiply together matrices of 

compatible shapes by A.B; and you can take powers of matrices by (for example) 

A^3; or A^(-1); (giving the inverse of the matrix). 

Multiplication of square matrices is associative: A.(B.C) = (A.B).C and distributive 

A.(B + C) = A.B + A.C but not (in general) commutative A.B " B.A. 

Maple calculates the determinant of a (square) matrix with Determinant(M);  

It satisfies det(A.B) = det(A).det(B). 
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Differential equations 
You can use the dsolve function to find an analytic solution to a differential 

equation (say) 

! 

d
2
x

dt
2

+ x = 0 with: 

dsolve((D@@2)(x)(t) + x(t), x(t)); 

With boundary conditions: dsolve({(D@@2)(x)(t)+x(t), x(0)=0, D(x)(1)=1},x(t)); 

You must use the D operator if you specify boundary conditions for derivatives. 

There are many options you can use to (for example) specify the method you want 

to use to solve the equation. 

If you have found a solution s as above and you want to plot (say) y as an 

expression in x you can use assign(s); to make y into this expression. If you want 

to use y as a variable again afterwards, remember to unassign it with y := 'y'; 

The function DEplot in the DEtools package can be used to plot numerical 

solutions of single differential equations or of systems of equations. If you want 

individual solution curves then you specify initial conditions as a list of lists: one 

list for each curve. There are lots of options you can include. 

You can use the DEplot command from the DEtools package to plot the solutions 

of differential equations numerically: 

DEtools[DEplot]((D@@2)(x)(t)+x(t), x(t), t=0..10, [[x(0)=0, D(x)(0)=1]]); 

 

 

Randomisation 
Maple generates (pseudo) random numbers with the function rand.  

Entering roll:=rand(2 .. 5); creates a random number generator roll( ) which 

produces random integers between 2 and 5 each time it is called. 

Use randomize(); before you generate a sequence of random numbers otherwise 

you will get the same sequence each time. 

 

 

Recursion 
A Maple procedure may call itself (hopefully with different values of its 

parameters!) and provided this process eventually gives a definite answer, Maple 

will do the calculation. It is sometimes helpful to include option = remember at 

the beginning of the body of the procedure. 
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The Geometry package 
The Geometry package lets you create and manipulate several kinds of geometric 

object.  

To use it enter with(geometry): and if you want to label your axes x and y then 

enter: 

 _EnvHorizontalName:=x: _EnvVerticalName:=y: 

 

Create a point A with (say) point(A, 0, 0); and a line a from (already created) 

points A to B with line(a, [A,B]); or line(b, y=2*x+5); specifying its equation. 

Many other constructions are available to save you having to make them all 

yourself. 

For example, you can make triangle(t, [A,B,C]); and circle(c, [A, B, C]); 

(through A, B, C) or circle(cc, [X, 1]); (centre X, radius 1). 

 

You can find out about any object you have defined using detail. 

 

The draw command will let you draw a list or set of constructed objects (which 

had better not depend on any variables). Options allow you to label objects, change 

colours, etc. Among the more useful options you can specify are printtext = true 

(which labels any points you draw) and axes = none. 

 

By using variables rather than constants as coordinates you can use Maple to prove 

general results rather than just special cases. To persuade Maple to let you do this 

it may be necessary to make assumptions about some variables (to ensure, for 

example that two points are distinct so you can join them with a line). Do this with 

the assume( ) command. Maple will then put a little ~ symbol on anything which 

relies on the assumptions. 
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 Pictures of some of the mathematicians whose work was 
encountered during the course 

 

Archimedes of Syracuse 

287BC—212BC 

Born: Syracuse, Sicily 

 

 

Pafnuty Chebyshev 

1821—1894 

Born: Okatovo, Russia 

 

Arthur Cayley 

1821—1895 

Born: Richmond, England 

 

 

Girard Desargues 

1591—1661 

Born: Lyon, France 
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Eratosthenes 

276BC—194BC 

Born: Shahhat, Libya 

 

Leonhard Euler 

1707—1783 

Born: Basel, Switzerland 

 

 

 

Euclid of Alexandria 

about 325BC—about 265BC 

 

 

Pierre de Fermat 

1601—1665 

Born: Beaumont-de-Lomagne, France 
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Fibonacci of Pisa 

1170—1250 

Born: Pisa, Italy 

 

 

Carl Friedrich Gauss 

1777—1855 

Born: Brunswick, Germany 

 

 

 

Joseph Fourier 

1768—1830 

Born: Auxerre, France 

 

 

Jorgen Gram 

1850—1916 

Born: Nustrup, Denmark 
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William Rowan Hamilton 

1805—1865 

Born: Dublin, Ireland 

 

 

Charles Hermite 

1822—1901 

Born: Dieuze, France 

 

 

 

G H Hardy 

1877—1947 

Born: Cranleigh, England 

 

 

Heron of Alexandria 

about 10AD—about 75AD 

Born: Alexandria, Egypt 
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Carl Jacobi 

1804—1851 

Born: Potsdam, Germany 

 

 

Edmond Laguerre 

1834—1886 

Born: Bar-le-Duc, France 

 

 

 

Gaston Julia 

1893—1978 

Born: Sidi bel Abbès, Algeria 

 

 

Adrien-Marie Legendre 

1752—1833 

Born: Paris, France 
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Sophus Lie 

1842—1899 

Born: Nordfjordeide, Norway 

 

 

Edouard Lucas 

1842—1891 

Born: Amiens, France 

 

 

 

Jules Lissajous 

1822—1880 

Born: Versailles, France 

 

 

Colin Maclaurin 

1698—1746 

Born: Kilmodan, Scotland 
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Marin Mersenne 

1588—1648 

Born: Oizé in Maine, France 

 

 

Blaise Pascal 

1623—1662 

Born: Clermont-Ferrand, France 

 

 

 

Isaac Newton 

1643—1727 

Born: Woolsthorpe, England 

 

 

Ptolemy 

about 85AD—about 165AD 

Born: Egypt 

 

 



 126 

 

Pythagoras 

about 569BC—about 475BC 

Born: Samos, Greece 

 

 

Erhard Schmidt 

1876—1959 

Born: Tartu, Estonia 

 

 

 

Srinivasa Ramanujan 

1887—1920 

Born: Tamil Nadu, India 

 

 

Waclaw Sierpinski 

1882—1969 

Born: Warsaw, Poland 
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Robert Simson 

1687—1768 

Born: West Kilbride, Scotland 

 

 

Ehrenfried Tschirnhaus 

1651—1708 

Born: Görlitz, Germany 

 

Brook Taylor 

1685—1731 

Born: Edmonton, England 

 

 

Tsu Chongzhi 

429—501 

Born: Nanking, China 
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Vito Volterra 

1860—1940 

Born: Ancona, Italy 

 

 

William Wallace 

1768—1843 

Born: Dysart, Scotland

More details at the MacTutor website: http://www-history.mcs.st-andrews.ac.uk/ 
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